题意
https://hihocoder.com/problemset/problem/1195
思路
高斯消元是解决高元方程的一种算法,复杂度 (O(n^3)) 。
过程大致是:
- 构造一个未知数的倒三角,并维护多解标记;
- 寻找是否出现没有未知数但常数非零的式子,有则返回无解;
- 多解标记若存在则返回多解;
- 在倒三角里倒着扫一遍,解出所有未知数。
下面是代码实现:
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=505;
const double eps=1e-8;
double a[2*N][N],b[2*N];
int n,m;
int Gauss(double a[2*N][N],double b[2*N],int n,int m)
{
bool flag=0;
for(int i=1,r=1;i<=n;i++,r++)
{
bool f=0;
FOR(j,r,m)if(fabs(a[j][i])>eps)
{
swap(a[j],a[r]),swap(b[j],b[r]);
f=1;break;
}
if(!f){flag=1,r--;continue;}
FOR(j,r+1,m)
{
FOR(k,i+1,n)a[j][k]-=a[r][k]*a[j][i]/a[r][i];
b[j]-=b[r]*a[j][i]/a[r][i];
a[j][i]=0;
}
}
FOR(i,1,m)if(fabs(b[i])>eps)
{
bool f=0;
FOR(j,1,n)if(fabs(a[i][j])>eps){f=1;break;}
if(!f)return 0;
}
if(flag)return -1;
DOR(i,n,1)
{
FOR(j,i+1,n)b[i]-=a[i][j]*b[j];
b[i]/=a[i][i];
a[i][i]=1;
}
return 1;
}
int main()
{
scanf("%d%d",&n,&m);
FOR(i,1,m)
{
FOR(j,1,n)scanf("%lf",&a[i][j]);
scanf("%lf",&b[i]);
}
int res=Gauss(a,b,n,m);
if(res==-1)puts("Many solutions");
else if(res==0)puts("No solutions");
else FOR(i,1,n)printf("%d
",(int)(b[i]+0.5));
return 0;
}