题意
给定一个长度为 (n) 的 (01) 串,完成 (m) 种操作——操作分两种翻转 ([l,r]) 区间中的元素、求区间 ([l,r]) 有多少个不同的子序列。
(1 leq n,m leq 10^5)
思路
看到这种题目,应该条件反射的去想一下线段树。
但首先还是从一个询问开始,对于一个长度为 (n) 的串,设 (dp_{i,j}) 为前 (i) 位组成的序列中,以 (j) 结尾的串的个数,若串的第 (i) 位为 (j) 有递推式:
(dp_{i,j}=dp_{i-1,0}+dp_{i-1,1}+1)
(dp_{i,!j}=dp_{i-1,!j})
上式是以 (0j,1j) 结尾的串的个数,加上单独一个(j) ;下式则直接转移上一位的信息。
那么将 ({dp_{0,0},dp_{0,1},1}) 作为初始矩阵,用线段树维护区间对应的转移矩阵即可。
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=1e5+5;
const int P=1e9+7;
struct Matrix
{
int n,m,a[4][4];
int *operator [](const int x){return a[x];}
void resize(int _n,int _m){n=_n,m=_m;}
Matrix operator *(const Matrix &_)const
{
Matrix res;res.resize(n,_.m);
FOR(i,1,n)FOR(j,1,_.m)
{
res[i][j]=0;
FOR(k,1,m)(res[i][j]+=1ll*a[i][k]*_.a[k][j]%P)%=P;
}
return res;
}
void flip()
{
swap(a[1][1],a[2][2]);
swap(a[1][2],a[2][1]);
swap(a[3][1],a[3][2]);
}
Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
};
const Matrix Zero=(Matrix){
3,3,
0,0,0,0,
0,1,0,0,
0,1,1,0,
0,1,0,1};
const Matrix One =(Matrix){
3,3,
0,0,0,0,
0,1,1,0,
0,0,1,0,
0,0,1,1};
Matrix nd[N<<2],A;
int tag[N<<2];
char str[N];
void build(int k,int l,int r)
{
tag[k]=0;
if(l==r)
{
if(str[l]=='0')nd[k]=Zero;
else nd[k]=One;
return;
}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
nd[k]=nd[k<<1]*nd[k<<1|1];
}
void push_down(int k)
{
if(!tag[k])return;
tag[k<<1]^=1,nd[k<<1].flip();
tag[k<<1|1]^=1,nd[k<<1|1].flip();
tag[k]=0;
}
void update(int k,int L,int R,int l,int r)
{
if(L<=l&&r<=R)
{
tag[k]^=1,nd[k].flip();
return;
}
push_down(k);
int mid=(l+r)>>1;
if(L<=mid)update(k<<1,L,R,l,mid);
if(R>mid)update(k<<1|1,L,R,mid+1,r);
nd[k]=nd[k<<1]*nd[k<<1|1];
}
Matrix query(int k,int L,int R,int l,int r)
{
if(L<=l&&r<=R)return nd[k];
push_down(k);
int mid=(l+r)>>1;
if(R<=mid)return query(k<<1,L,R,l,mid);
else if(L>mid)return query(k<<1|1,L,R,mid+1,r);
else return query(k<<1,L,R,l,mid)*query(k<<1|1,L,R,mid+1,r);
}
int main()
{
A.resize(1,3);
A[1][1]=0,A[1][2]=0,A[1][3]=1;
int T,n,Q;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&Q);
scanf("%s",str+1);
build(1,1,n);
int op,x,y;
while(Q--)
{
scanf("%d%d%d",&op,&x,&y);
if(op==1)update(1,x,y,1,n);
else
{
Matrix res=A*query(1,x,y,1,n);
printf("%d
",(res[1][1]+res[1][2])%P);
}
}
}
return 0;
}