Description
Give you a sequence of N(N≤100,000) integers : a1,...,an(0<ai≤1000,000,000). There are Q(Q≤100,000) queries. For each query l,r you have to calculate gcd(al,,al+1,...,ar) and count the number of pairs(l′,r′)(1≤l<r≤N)such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar).
Input
The first line of input contains a number T, which stands for the number of test cases you need to solve.
The first line of each case contains a number N, denoting the number of integers.
The second line contains N integers, a1,...,an(0<ai≤1000,000,000).
The third line contains a number Q, denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.
The first line of each case contains a number N, denoting the number of integers.
The second line contains N integers, a1,...,an(0<ai≤1000,000,000).
The third line contains a number Q, denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar).
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar).
Sample Input
1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
Sample Output
Case #1: 1 8 2 4 2 4 6 1
1 //2016.8.9 2 #include<iostream> 3 #include<cstdio> 4 #include<map> 5 #include<algorithm> 6 #include<cmath> 7 8 using namespace std; 9 10 typedef long long ll; 11 const int N = 100005; 12 int dp[N][20];//d[i][j]表示从第i个数字开始向后2^j个数字这段区间内的gcd,具有递减性 13 map<int, ll> mp; 14 15 void init_rmq(int n)//初始化dp,求出每段区间的gcd 16 { 17 for(int j = 1; j < (int)log2(n)+1; j++) 18 for(int i = 1; i <= n; i++) 19 { 20 if(i+(1<<j)-1 <= n) 21 dp[i][j] = __gcd(dp[i][j-1], dp[i+(1<<(j-1))][j-1]); 22 } 23 } 24 25 int rmq(int l, int r)//查询 26 { 27 int k = (int)log2(r-l+1); 28 return __gcd(dp[l][k], dp[r-(1<<k)+1][k]); 29 } 30 31 int main() 32 { 33 int n, q, l, r, T, kase = 0; 34 cin>>T; 35 while(T--) 36 { 37 printf("Case #%d: ", ++kase); 38 cin>>n; 39 mp.clear(); 40 for(int i = 1; i <= n; i++) 41 scanf("%d", &dp[i][0]); 42 init_rmq(n); 43 44 //利用二分求具有相同gcd区间的数目 45 //----------------------------------------------------------------------------------- 46 for(int i = 1; i <= n; i++) 47 { 48 int a = i, b = n, mid, tmp, vs; 49 while(1) 50 { 51 tmp = a; 52 vs = rmq(i, a); 53 while(a <= b) 54 { 55 mid = (a+b)>>1; 56 if(rmq(i, mid)<vs) b = mid-1; 57 else a = mid+1; 58 } 59 mp[vs]+=1ll*(b-tmp+1); 60 b = n; 61 if(a>b)break; 62 } 63 } 64 //------------------------------------------------------------------------------------ 65 66 cin>>q; 67 while(q--) 68 { 69 scanf("%d%d", &l, &r); 70 int ans = rmq(l, r); 71 cout<<ans<<" "<<mp[ans]<<endl; 72 } 73 } 74 75 return 0; 76 }