Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17870 Accepted Submission(s): 10851
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
逆序数的概念: 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个 逆序 。一个排列中逆序的总数就称为这个排列的 逆序数 。逆序数为 偶数 的排列称为 偶排列 ;逆序数为奇数的排列称为 奇排列 。如2431中,21,43,41,31是逆序,逆序数是4,为偶排列。
逆序数计算方法是:在逐个元素读取原始数列时,每次读取都要查询当前已读取元素中大于当前元素的个数,加到sum里,最后得到的sum即为原始数列的逆序数。
接下来找数列平移后得到的最小逆序数,假设当前序列逆序数是sum,那么将a[0]移到尾部后逆序数的改变是之前比a[0]大的数全部与尾部a[0]组合成逆序数,假设数量为x,则x=n-1-a[0],而之前比a[0]小的数(也就是之前能和a[0]组合为逆序数的元素)不再与a[0]组合成逆序数,假设数量为y,则y=n-x-1,这样,新序列的逆序数就是sum+x-y=sum-2*a[0]+n-1;
接下来说明下线段树的作用,线段区间表示当前已读取的元素个数,比如[m,n]表示在数字m到n之间有多少个数已经读入,build时所有树节点全部为0就是因为尚未读数,ins函数是将新读入的数字更新到线段树里,点更新,query函数是查询当前数字区间已存在的数字个数。
除去逆序数方面的内容,这基本就是一道线段树的模板题
//2016.8.10 #include<iostream> #include<cstdio> #include<cstring> #define N 5005 #define lson (id<<1) #define rson ((id<<1)|1) #define mid ((l+r)>>1) using namespace std; struct node { int sum; }tree[N*5]; int arr[N]; void build_tree(int id, int l, int r) { tree[id].sum = 0; if(l == r){ return ; } build_tree(lson, l, mid); build_tree(rson, mid+1, r); return; } void ins(int id, int l, int r, int pos) { if(l == r){ tree[id].sum = 1;return ; } if(pos <= mid) ins(lson, l, mid, pos); else ins(rson, mid+1, r, pos); tree[id].sum = tree[lson].sum + tree[rson].sum; return ; } int query(int id, int l, int r, int ql, int qr) { if(ql<=l&&r<=qr){ return tree[id].sum; } int cnt = 0; if(ql<=mid)cnt += query(lson, l, mid, ql, qr); if(mid+1<=qr)cnt += query(rson, mid+1, r, ql, qr); return cnt; } int main() { int n; while(cin>>n) { int sum = 0; build_tree(1, 0, n-1); for(int i = 0; i < n; i++){ scanf("%d", &arr[i]); sum+=query(1, 0, n-1, arr[i], n-1); ins(1, 0, n-1, arr[i]); } //得到初始序列的逆序数 int ans = sum; for(int i = 0; i < n; i++)//移动数列找最小逆序数 { sum = sum-2*arr[i]+n-1; if(ans > sum)ans = sum; } cout<<ans<<endl; } return 0; }
树状数组
1 //2016.9.13 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 #define N 5005 6 7 using namespace std; 8 9 int a[N], arr[N], n; 10 11 int lowbit(int x){return x&(-x);} 12 13 void add(int pos, int tt) 14 { 15 for(int i = pos; i <= n; i+=lowbit(i)) 16 arr[i] += tt; 17 } 18 19 int query(int pos) 20 { 21 int sum = 0; 22 for(int i = pos; i > 0; i-=lowbit(i)) 23 sum += arr[i]; 24 return sum; 25 } 26 27 int main() 28 { 29 int sum, ans, tmp; 30 while(scanf("%d", &n)!=EOF) 31 { 32 memset(arr, 0, sizeof(arr)); 33 for(int i = 1; i <= n; i++) 34 { 35 scanf("%d", &a[i]); 36 a[i]; 37 } 38 sum = 0; 39 for(int i = 1; i <= n; i++) 40 { 41 sum += query(n-a[i]);//n-a[i]表示a[i]为第n-a[i]大 42 add(n-a[i], 1); 43 } 44 ans = sum; 45 for(int i = 1; i < n; i++) 46 { 47 add(n-a[i], -1); 48 sum = sum+query(n-a[i])-a[i]; 49 add(n-a[i], 1); 50 if(ans > sum) ans = sum; 51 } 52 printf("%d ", ans); 53 } 54 55 return 0; 56 }