zoukankan      html  css  js  c++  java
  • HDU1394(线段树||树状数组)

    Minimum Inversion Number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 17870    Accepted Submission(s): 10851


    Problem Description

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

    For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

    a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
    a2, a3, ..., an, a1 (where m = 1)
    a3, a4, ..., an, a1, a2 (where m = 2)
    ...
    an, a1, a2, ..., an-1 (where m = n-1)

    You are asked to write a program to find the minimum inversion number out of the above sequences.
     

    Input

    The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
     

    Output

    For each case, output the minimum inversion number on a single line.
     

    Sample Input

    10
    1 3 6 9 0 8 5 7 4 2
     

    Sample Output

    16
     

    逆序数的概念: 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个 逆序 。一个排列中逆序的总数就称为这个排列的 逆序数 。逆序数为 偶数 的排列称为 偶排列 ;逆序数为奇数的排列称为 奇排列 。如2431中,21,43,41,31是逆序,逆序数是4,为偶排列。

    逆序数计算方法是:在逐个元素读取原始数列时,每次读取都要查询当前已读取元素中大于当前元素的个数,加到sum里,最后得到的sum即为原始数列的逆序数。

    接下来找数列平移后得到的最小逆序数,假设当前序列逆序数是sum,那么将a[0]移到尾部后逆序数的改变是之前比a[0]大的数全部与尾部a[0]组合成逆序数,假设数量为x,则x=n-1-a[0],而之前比a[0]小的数(也就是之前能和a[0]组合为逆序数的元素)不再与a[0]组合成逆序数,假设数量为y,则y=n-x-1,这样,新序列的逆序数就是sum+x-y=sum-2*a[0]+n-1;

    接下来说明下线段树的作用,线段区间表示当前已读取的元素个数,比如[m,n]表示在数字m到n之间有多少个数已经读入,build时所有树节点全部为0就是因为尚未读数,ins函数是将新读入的数字更新到线段树里,点更新,query函数是查询当前数字区间已存在的数字个数。

     除去逆序数方面的内容,这基本就是一道线段树的模板题

    //2016.8.10
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define N 5005
    #define lson (id<<1)
    #define rson ((id<<1)|1)
    #define mid ((l+r)>>1)
    
    using namespace std;
    
    struct node
    {
        int sum;
    }tree[N*5];
    
    int arr[N];
    
    void build_tree(int id, int l, int r)
    {
        tree[id].sum = 0;
        if(l == r){
            return ;
        }
        build_tree(lson, l, mid);
        build_tree(rson, mid+1, r);
        return;
    }
    
    void ins(int id, int l, int r, int pos)
    {
        if(l == r){
            tree[id].sum = 1;return ;
        }
        if(pos <= mid)
          ins(lson, l, mid, pos);
        else 
          ins(rson, mid+1, r, pos);
        tree[id].sum = tree[lson].sum + tree[rson].sum;
        return ;
    }
    
    int query(int id, int l, int r, int ql, int qr)
    {
        if(ql<=l&&r<=qr){
            return tree[id].sum;
        }
        int cnt = 0;
        if(ql<=mid)cnt += query(lson, l, mid, ql, qr);
        if(mid+1<=qr)cnt += query(rson, mid+1, r, ql, qr);
    
        return cnt;
    }
    
    int main()
    {
        int n;
        while(cin>>n)
        {
            int sum = 0;
            build_tree(1, 0, n-1);
            for(int i = 0; i < n; i++){
                scanf("%d", &arr[i]);
                sum+=query(1, 0, n-1, arr[i], n-1);
                ins(1, 0, n-1, arr[i]);
            }
            //得到初始序列的逆序数
            int ans = sum;
            for(int i = 0; i < n; i++)//移动数列找最小逆序数
            {
                sum = sum-2*arr[i]+n-1;
                if(ans > sum)ans = sum;
            }
            cout<<ans<<endl;
        }
    
        return 0;
    }

     树状数组

     1 //2016.9.13
     2 #include <iostream>
     3 #include <cstdio>
     4 #include <cstring>
     5 #define N 5005
     6 
     7 using namespace std;
     8 
     9 int a[N], arr[N], n;
    10 
    11 int lowbit(int x){return x&(-x);}
    12 
    13 void add(int pos, int tt)
    14 {
    15     for(int i = pos; i <= n; i+=lowbit(i))
    16           arr[i] += tt;
    17 }
    18 
    19 int query(int pos)
    20 {
    21     int sum = 0;
    22     for(int i = pos; i > 0; i-=lowbit(i))
    23           sum += arr[i];
    24     return sum;
    25 }
    26 
    27 int main()
    28 {
    29     int sum, ans, tmp;
    30     while(scanf("%d", &n)!=EOF)
    31     {
    32         memset(arr, 0, sizeof(arr));
    33         for(int i = 1; i <= n; i++)
    34         {
    35             scanf("%d", &a[i]);
    36             a[i];
    37         }
    38         sum = 0;
    39         for(int i = 1; i <= n; i++)
    40         {
    41             sum += query(n-a[i]);//n-a[i]表示a[i]为第n-a[i]大
    42             add(n-a[i], 1);
    43         }
    44         ans = sum;
    45         for(int i = 1; i < n; i++)
    46         {
    47             add(n-a[i], -1);
    48             sum = sum+query(n-a[i])-a[i];
    49             add(n-a[i], 1);
    50             if(ans > sum) ans = sum;
    51         }
    52         printf("%d
    ", ans);
    53     }
    54 
    55     return 0;
    56 }
  • 相关阅读:
    ASP.NET中Session,Application,Viewstate,Cache,隐藏域和带参数的传接收值的用法
    JS页面跳转搜集
    SQL中常用的日期转化
    DIV+CSS兼容性解决IE6/IE7/FF浏览器的通用方法
    C#中将数据导出为EXCEL方式汇总
    正则表达式大全
    ASP.NET中Cookie用法小节
    div+CSS浏览器兼容问题整理
    站长常用的200个js代码
    [转]主机和终端
  • 原文地址:https://www.cnblogs.com/Penn000/p/5758120.html
Copyright © 2011-2022 走看看