zoukankan      html  css  js  c++  java
  • POJ2115(扩展欧几里得)

    C Looooops

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 23700   Accepted: 6550

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

     由题意易得(a+cx)%2^k==b,求x最小值。可得同余方程c*x=(b-a)mod2^k。

     1 //2016.8.17
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<algorithm>
     5 #define ll long long 
     6 
     7 using namespace std;
     8 
     9 ll ex_gcd(ll a, ll b, ll& x, ll& y)//扩展欧几里得
    10 {
    11     if(b==0)
    12     {
    13         x = 1; 
    14         y = 0;
    15         return a;
    16     }
    17     ll ans = ex_gcd(b, a%b, x, y);
    18     ll tmp = x;
    19     x = y;
    20     y = tmp-(a/b)*y;
    21     return ans;
    22 }
    23 
    24 int main()
    25 {
    26     ll a, b, c, x, y, res, n;
    27     int k;
    28     while(scanf("%lld%lld%lld%d", &a, &b, &c, &k)!=EOF)
    29     {
    30         if(!a&&!b&&!c&&!k)
    31           break;
    32         n = (ll)1<<k;
    33         res = ex_gcd(c, n, x, y);
    34         cout<<res<<endl<<x<<endl;
    35         if((b-a)%res!=0)cout<<"FOREVER"<<endl;
    36         else 
    37         {
    38             x = x*(b-a)/res%n;//方程ax=b-a(mod n)的最小解
    39             ll tmp = n/res;
    40             x = (x%tmp+tmp)%tmp;//最小正数解
    41             printf("%lld
    ", x);
    42         }
    43     }
    44 
    45     return 0;
    46 }
     1 #include <iostream>
     2 #define ll long long
     3 
     4 using namespace std;
     5 
     6 ll ex_gcd(ll a, ll b, ll& x, ll& y){
     7     if(b == 0){
     8         x = 1;
     9         y = 0;
    10         return a;
    11     }
    12     ll ans = ex_gcd(b, a%b, x, y);
    13     ll tmpx = x;
    14     x = y;
    15     y = tmpx-a/b*y;
    16     return ans;
    17 }
    18 
    19 int main()
    20 {
    21     int a, b, c, k;
    22     while(cin>>a>>b>>c>>k){
    23         if(!a&&!b&&!c&&!k)break;
    24         ll x, y;
    25         ll A = c;
    26         ll B = b-a;
    27         ll n = 1LL<<k;
    28         ll gcd = ex_gcd(A, n, x, y);
    29         if(B%gcd != 0)
    30             cout<<"FOREVER"<<endl;
    31         else{
    32             x = (x*(B/gcd))%n;
    33             x = (x%(n/gcd)+n/gcd)%(n/gcd);
    34             cout<<x<<endl;
    35         }
    36     }
    37     return 0;
    38 }
  • 相关阅读:
    setTimeout中0毫秒延时
    javascript中call和apply方法
    javascript闭包
    apns 服务
    新的开始,新的起点
    心情笔记
    如何解决控件附件上传时超大附件无法上传的问题
    BPM实例分享——日期自动计算
    BPM实例分享——金额规则大写
    分享一个程序猿在流程数据查看权限问题的总结
  • 原文地址:https://www.cnblogs.com/Penn000/p/5779548.html
Copyright © 2011-2022 走看看