zoukankan      html  css  js  c++  java
  • POJ2185(KMP)

    Milking Grid

    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 7896   Accepted: 3408

    Description

    Every morning when they are milked, the Farmer John's cows form a rectangular grid that is R (1 <= R <= 10,000) rows by C (1 <= C <= 75) columns. As we all know, Farmer John is quite the expert on cow behavior, and is currently writing a book about feeding behavior in cows. He notices that if each cow is labeled with an uppercase letter indicating its breed, the two-dimensional pattern formed by his cows during milking sometimes seems to be made from smaller repeating rectangular patterns. 

    Help FJ find the rectangular unit of smallest area that can be repetitively tiled to make up the entire milking grid. Note that the dimensions of the small rectangular unit do not necessarily need to divide evenly the dimensions of the entire milking grid, as indicated in the sample input below. 

    Input

    * Line 1: Two space-separated integers: R and C 

    * Lines 2..R+1: The grid that the cows form, with an uppercase letter denoting each cow's breed. Each of the R input lines has C characters with no space or other intervening character. 

    Output

    * Line 1: The area of the smallest unit from which the grid is formed 

    Sample Input

    2 5
    ABABA
    ABABA
    

    Sample Output

    2
    

    Hint

    The entire milking grid can be constructed from repetitions of the pattern 'AB'.
     
    利用KMP求行和列的最小循环节,并找出它们的最小公倍数,行和列相乘即为答案。
     1 //2016.8.17
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<algorithm>
     5 
     6 using namespace std;
     7 
     8 const int N = 10005;
     9 const int M = 80;
    10 char grid[N][M];
    11 int nex[N];
    12 
    13 int gcd(int a, int b)
    14 {
    15     return b==0?a:gcd(b, a%b);
    16 }
    17 
    18 int lcm(int a, int b)
    19 {
    20     return a/gcd(a, b)*b;
    21 }
    22 
    23 void getNext(int pos, int n, int fg)//构造next[]数组,fg为标记,0为行,1为列
    24 {
    25     nex[0] = -1;
    26     for(int i = 0, fail = -1; i < n;)
    27     {
    28         if(fg == 0 && (fail == -1 || grid[pos][i] == grid[pos][fail]))
    29         {
    30             i++, fail++;
    31             nex[i] = fail;
    32         }else if(fg == 1 && (fail == -1 || grid[i][pos] == grid[fail][pos]))
    33         {
    34             i++, fail++;
    35             nex[i] = fail;
    36         }else fail = nex[fail];
    37     }
    38 }
    39 
    40 int main()
    41 {
    42     int n, m, clen, rlen;
    43     while(scanf("%d%d", &n, &m)!=EOF)
    44     {
    45         clen = rlen = 1;
    46         for(int i = 0; i < n; i++)
    47             scanf("%s", grid[i]);
    48         for(int i = 0; i < n; i++)//用最小公倍数找到循环块的宽度
    49         {
    50             getNext(i, m, 0);
    51             rlen = lcm(rlen, m-nex[m]);//m-nex[m]为该行最小循环节的长度
    52             if(rlen>=m){
    53                 rlen = m; break;
    54             }
    55         }
    56         for(int i = 0; i < m; i++)//用最小公倍数找到循环块的高度
    57         {
    58             getNext(i, n, 1);
    59             clen = lcm(clen, n-nex[n]);//n-nex[n]为该列最小循环节的长度
    60             if(clen>=n){
    61                 clen = n; break;
    62             }
    63         }
    64         printf("%d
    ", clen*rlen);
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    Maganto错误Cannot initialize the indexer process的解决方法
    保护单元格内容
    欧几里得算法
    SVN服务端命令行的使用心得
    C++常用数值类型的值范围的宏定义
    代码之谜(三) 运算符
    《越狱》观后感
    R 报错的问题
    代码之谜(二) 语句与表达式
    你为什么薪水那么低(二)之 生产力
  • 原文地址:https://www.cnblogs.com/Penn000/p/5780641.html
Copyright © 2011-2022 走看看