zoukankan      html  css  js  c++  java
  • POJ3264(KB7-G RMQ)

    Balanced Lineup

    Time Limit: 5000MS Memory Limit: 65536K  
    otal Submissions: 52651 Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

     
     1 //2017-05-17
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int N = 50005;
    11 int a[N], DPmin[N][20], DPmax[N][20];
    12 
    13 void init(int n)
    14 {
    15     for(int j = 1; j<=(int)log2(n); j++)
    16       for(int i = 1; i<=n; i++){
    17           DPmax[i][j] = DPmax[i][j-1];
    18           DPmin[i][j] = DPmin[i][j-1];
    19           if(i+(1<<j)-1 <= n){
    20               DPmax[i][j] = max(DPmax[i][j-1], DPmax[i+(1<<(j-1))][j-1]);
    21               DPmin[i][j] = min(DPmin[i][j-1], DPmin[i+(1<<(j-1))][j-1]);
    22           }
    23       }
    24 }
    25 
    26 int query(int l, int r)
    27 {
    28     int k = (int)log2(r-l+1);
    29     return max(DPmax[l][k], DPmax[r-(1<<k)+1][k])-min(DPmin[l][k], DPmin[r-(1<<k)+1][k]);
    30 }
    31 
    32 int main()
    33 {
    34     int n, q;
    35     while(scanf("%d%d", &n, &q)!=EOF)
    36     {
    37         for(int i = 1; i <= n; i++){
    38             scanf("%d", &DPmax[i][0]);
    39             DPmin[i][0] = DPmax[i][0];
    40         }
    41         init(n);    
    42         int l, r;
    43         while(q--)
    44         {
    45             scanf("%d%d", &l, &r);
    46             printf("%d
    ", query(l, r));
    47         }
    48     }
    49 
    50     return 0;
    51 }
  • 相关阅读:
    Servlet(2):通过servletContext对象实现数据共享
    Servlet(1):Servlet介绍
    MyBatis(4):使用limit实现分页
    MyBatis(3):优化MyBatis配置文件
    MyBatis(2):CRUD操作
    SpringMVC(4):文件上传与下载
    SpringMVC(3):AJAX
    什么是开发环境、测试环境、生产环境、UAT环境、仿真环境
    SQL SERVER添加表注释、字段注释
    SQL中行转列(PIVOT)与列转行(UNPIVOT)
  • 原文地址:https://www.cnblogs.com/Penn000/p/6872924.html
Copyright © 2011-2022 走看看