zoukankan      html  css  js  c++  java
  • POJ3264(KB7-G RMQ)

    Balanced Lineup

    Time Limit: 5000MS Memory Limit: 65536K  
    otal Submissions: 52651 Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

     
     1 //2017-05-17
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int N = 50005;
    11 int a[N], DPmin[N][20], DPmax[N][20];
    12 
    13 void init(int n)
    14 {
    15     for(int j = 1; j<=(int)log2(n); j++)
    16       for(int i = 1; i<=n; i++){
    17           DPmax[i][j] = DPmax[i][j-1];
    18           DPmin[i][j] = DPmin[i][j-1];
    19           if(i+(1<<j)-1 <= n){
    20               DPmax[i][j] = max(DPmax[i][j-1], DPmax[i+(1<<(j-1))][j-1]);
    21               DPmin[i][j] = min(DPmin[i][j-1], DPmin[i+(1<<(j-1))][j-1]);
    22           }
    23       }
    24 }
    25 
    26 int query(int l, int r)
    27 {
    28     int k = (int)log2(r-l+1);
    29     return max(DPmax[l][k], DPmax[r-(1<<k)+1][k])-min(DPmin[l][k], DPmin[r-(1<<k)+1][k]);
    30 }
    31 
    32 int main()
    33 {
    34     int n, q;
    35     while(scanf("%d%d", &n, &q)!=EOF)
    36     {
    37         for(int i = 1; i <= n; i++){
    38             scanf("%d", &DPmax[i][0]);
    39             DPmin[i][0] = DPmax[i][0];
    40         }
    41         init(n);    
    42         int l, r;
    43         while(q--)
    44         {
    45             scanf("%d%d", &l, &r);
    46             printf("%d
    ", query(l, r));
    47         }
    48     }
    49 
    50     return 0;
    51 }
  • 相关阅读:
    洛谷3004 [USACO10DEC]宝箱Treasure Chest
    洛谷3778 [APIO2017]商旅
    洛谷4141消失之物——每个体积的角度
    洛谷2943 [USACO09MAR]清理Cleaning Up——转变枚举内容的dp
    bzoj1858[Scoi2010]序列操作
    poj1325机器工作——二分图最小点覆盖
    洛谷P1144——最短路计数
    poj3254二进制放牛——状态压缩DP
    poj1191棋盘分割——区间DP
    洛谷P1474货币系统——背包方案计数
  • 原文地址:https://www.cnblogs.com/Penn000/p/6872924.html
Copyright © 2011-2022 走看看