zoukankan      html  css  js  c++  java
  • POJ3264(KB7-G RMQ)

    Balanced Lineup

    Time Limit: 5000MS Memory Limit: 65536K  
    otal Submissions: 52651 Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

     
     1 //2017-05-17
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 const int N = 50005;
    11 int a[N], DPmin[N][20], DPmax[N][20];
    12 
    13 void init(int n)
    14 {
    15     for(int j = 1; j<=(int)log2(n); j++)
    16       for(int i = 1; i<=n; i++){
    17           DPmax[i][j] = DPmax[i][j-1];
    18           DPmin[i][j] = DPmin[i][j-1];
    19           if(i+(1<<j)-1 <= n){
    20               DPmax[i][j] = max(DPmax[i][j-1], DPmax[i+(1<<(j-1))][j-1]);
    21               DPmin[i][j] = min(DPmin[i][j-1], DPmin[i+(1<<(j-1))][j-1]);
    22           }
    23       }
    24 }
    25 
    26 int query(int l, int r)
    27 {
    28     int k = (int)log2(r-l+1);
    29     return max(DPmax[l][k], DPmax[r-(1<<k)+1][k])-min(DPmin[l][k], DPmin[r-(1<<k)+1][k]);
    30 }
    31 
    32 int main()
    33 {
    34     int n, q;
    35     while(scanf("%d%d", &n, &q)!=EOF)
    36     {
    37         for(int i = 1; i <= n; i++){
    38             scanf("%d", &DPmax[i][0]);
    39             DPmin[i][0] = DPmax[i][0];
    40         }
    41         init(n);    
    42         int l, r;
    43         while(q--)
    44         {
    45             scanf("%d%d", &l, &r);
    46             printf("%d
    ", query(l, r));
    47         }
    48     }
    49 
    50     return 0;
    51 }
  • 相关阅读:
    python 字典
    python set集合
    python封装和解构
    python 内置数据结构 切片
    CPU 上下文切换及案例分析
    怎么理解linux的平均负载及平均负载高后的排查工具
    Linux性能优化
    python 内置数据结构 字符串
    python内置数据结构
    python GC、分支、循环
  • 原文地址:https://www.cnblogs.com/Penn000/p/6872924.html
Copyright © 2011-2022 走看看