zoukankan      html  css  js  c++  java
  • POJ2955(KB22-C 区间DP)

    Brackets

    Time Limit: 1000MSMemory Limit: 65536K
    Total Submissions: 7823Accepted: 4151

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6

    Source

     
     1 //2017-05-22
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 
     7 using namespace std;
     8 
     9 int dp[110][110];//dp[l][r]表示区间l-r中括号匹配数
    10 //若位置l和r匹配,dp[l][r] = max(dp[l][r], dp[l+1][r-1]+2)
    11 //否则,dp[l][r] = max(dp[l][r], dp[l][k]+dp[k+1][r]
    12 
    13 int main()
    14 {
    15     string str;
    16     while(cin>>str) 
    17     {
    18         if(str[0] == 'e')break;
    19         int n = str.length();
    20         memset(dp, 0, sizeof(dp));
    21         for(int len = 1; len < n; len++){
    22             for(int i = 0; i+len < n; i++){
    23                 int j = i+len;
    24                 if((str[i] == '(' && str[j] == ')') || (str[i] == '[' && str[j] == ']'))dp[i][j] = max(dp[i][j], dp[i+1][j-1]+2);
    25                 for(int k = i; k <= j; k++)
    26                   dp[i][j] = max(dp[i][j], dp[i][k]+dp[k+1][j]);
    27             }
    28         }
    29         cout<<dp[0][n-1]<<endl;
    30     }
    31 
    32     return 0;
    33 }
  • 相关阅读:
    java类继承总结一 父类类型与子类类型之间的转化问题(转)
    将子类对象引用赋值给超类对象 JAVA 编译时多态性
    JAVA访问控制变量、类变量、类方法
    java传递是引用的拷贝,既不是引用本身,更不是对象
    JAVA的StringBuffer类
    (文件名.JAVA)的文件名只能与该文件中的public类的名称一致
    类变量(静态变量)的值不能被构造函数改写
    程序启动的顺序以及实例变量相互赋值、传递拷贝的理解
    MySQL选择合适的字符集
    MySQL日期类型选择
  • 原文地址:https://www.cnblogs.com/Penn000/p/6892347.html
Copyright © 2011-2022 走看看