zoukankan      html  css  js  c++  java
  • POJ2387(KB4-A)

    Til the Cows Come Home

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 54716   Accepted: 18560

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N 

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS: 

    There are five landmarks. 

    OUTPUT DETAILS: 

    Bessie can get home by following trails 4, 3, 2, and 1.

    Source

     
    dijkstra,坑点:有重边,取边权最小
     1 //2017-07-18
     2 #include <iostream>
     3 #include <cstdio>
     4 #include <cstring>
     5 
     6 using namespace std;
     7 
     8 const int N = 1010;
     9 const int inf = 0x3f3f3f3f;
    10 int t, n, G[N][N], dis[N], vis[N];
    11 
    12 void dijkstra(int s, int d)
    13 {
    14     for(int i = 1; i <= n; i++)
    15         dis[i] = G[s][i];
    16     dis[s] = 0;
    17     vis[s] = 1;
    18     int mindis, u;
    19     for(int i = 1; i <= n; i++)
    20     {
    21         mindis = inf;
    22         for(int j = 1; j <= n; j++)
    23             if(!vis[j] && dis[j] < mindis)
    24             {
    25                 mindis = dis[j];
    26                 u = j;
    27             }
    28         vis[u] = 1;
    29         for(int v = 1; v <= n; v++)
    30         {
    31             if(dis[v] > dis[u]+G[u][v]){
    32                 dis[v] = dis[u]+G[u][v];
    33             }
    34         }
    35     }
    36 }
    37 
    38 int main()
    39 {
    40     int s, d, u, v, w;
    41     while(cin>>t>>n)
    42     {
    43         for(int i = 1; i <= n; i++)
    44         {
    45             for(int j = 1; j <= n; j++)
    46                   G[i][j] = inf;
    47             dis[i] = inf;
    48             vis[i] = 0;
    49         }
    50         for(int i = 0; i < t; i++)
    51         {
    52             cin>>u>>v>>w;
    53             if(G[u][v] > w)
    54                 G[u][v] = G[v][u] = w;
    55         }
    56         dijkstra(n, 1);
    57         cout<<dis[1]<<endl;
    58     }
    59 
    60     return 0;
    61 }
     1 import java.util.*; // 2018-03-28
     2     
     3 public class Main {
     4     static final int INF = 0x3f3f3f3f;
     5     static Graph graph;
     6     static int [] dist;
     7     
     8     static boolean spfa(int s, int n) {
     9         boolean [] vis = new boolean[n+1];
    10         int [] cnt = new int[n+1];
    11         for(int i = 1; i <= n; i++) {
    12             dist[i] = INF;
    13             vis[i] = false;
    14         }
    15         Queue<Integer> que = new LinkedList<Integer>();
    16         que.offer(s);
    17         dist[s] = 0;
    18         vis[s] = true;
    19         while(!que.isEmpty()) {
    20             int u = que.poll();
    21             vis[u] = false;
    22             for(int i = graph.head[u]; i != -1; i = graph.edges[i].next) {
    23                 int v = graph.edges[i].v;
    24                 int w = graph.edges[i].w;
    25                 if(dist[v] > dist[u] + w) {
    26                     dist[v] = dist[u] + w;
    27                     if(!vis[v]) {
    28                         vis[v] = true;
    29                         que.offer(v);
    30                         if(++cnt[v] > n)return false;
    31                     }
    32                 }
    33             }
    34         }
    35         return true;
    36     }
    37     
    38     public static void main(String[] args) {
    39         Scanner cin = new Scanner(System.in);
    40         
    41         int n, m;
    42         while(cin.hasNext()) {
    43             m = cin.nextInt();
    44             n = cin.nextInt();
    45             graph = new Graph(n, 2*m);
    46             int u, v, w;
    47             for(int i = 0; i < m; i++) {
    48                 u = cin.nextInt();
    49                 v = cin.nextInt();
    50                 w = cin.nextInt();
    51                 graph.addEdge(u, v, w);
    52                 graph.addEdge(v, u, w);
    53             }
    54             dist = new int[n+1];
    55             if(spfa(1, n)) {
    56                 System.out.println(dist[n]);
    57             }
    58         }
    59     }
    60 }
    61     
    62 class Graph{
    63     static class Edge{
    64         int v, w, next;
    65         
    66         Edge(int _v, int _w, int _next){
    67             this.v = _v;
    68             this.w = _w;
    69             this.next = _next;
    70         }
    71     }
    72     
    73     int n, m, tot;
    74     int [] head;
    75     Edge [] edges;
    76     
    77     Graph(int _n, int _m){
    78         this.n = _n;
    79         this.m = _m;
    80         tot = 0;
    81         head = new int[n+1];
    82         edges = new Edge[m+1];
    83         for(int i = 0; i <= n; i++)
    84             head[i] = -1;
    85     }
    86     
    87     void addEdge(int u, int v, int w) {
    88         edges[tot] = new Edge(v, w, head[u]);
    89         head[u] = tot++;
    90     }
    91 }
  • 相关阅读:
    数据恢复
    InnoDB LRU优化
    STM32 M0之SPI
    C# 添加日志文件
    VCI_CAN二次开发摘机
    [一点感触]ADF4350 ADF4111混频记
    Linux札记
    C# String与Byte数组的转换
    STM32 CAN
    stm32 F40x CCM数据区的使用
  • 原文地址:https://www.cnblogs.com/Penn000/p/7202695.html
Copyright © 2011-2022 走看看