zoukankan      html  css  js  c++  java
  • POJ2478(SummerTrainingDay04-E 欧拉函数)

    Farey Sequence

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 16927   Accepted: 6764

    Description

    The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are 
    F2 = {1/2} 
    F3 = {1/3, 1/2, 2/3} 
    F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 
    F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5} 

    You task is to calculate the number of terms in the Farey sequence Fn.

    Input

    There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

    Output

    For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn. 

    Sample Input

    2
    3
    4
    5
    0

    Sample Output

    1
    3
    5
    9

    Source

    POJ Contest,Author:Mathematica@ZSU
     
    求1-n的欧拉函数和即可。
     1 //2017-08-04
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 
     7 using namespace std;
     8 
     9 const int N = 1000010;
    10 int phi[N],prime[N],tot;
    11 long long ans[N];
    12 bool book[N];
    13 
    14 void getphi()//线性欧拉函数筛
    15 {    
    16    int i,j;    
    17    phi[1]=1;    
    18    for(i=2;i<=N;i++)//相当于分解质因式的逆过程    
    19    {    
    20        if(!book[i])
    21        {    
    22             prime[++tot]=i;//筛素数的时候首先会判断i是否是素数。    
    23             phi[i]=i-1;//当 i 是素数时 phi[i]=i-1    
    24         }    
    25        for(j=1;j<=tot;j++)    
    26        {    
    27           if(i*prime[j]>N)  break;    
    28           book[i*prime[j]]=1;//确定i*prime[j]不是素数    
    29           if(i%prime[j]==0)//接着我们会看prime[j]是否是i的约数    
    30           {    
    31              phi[i*prime[j]]=phi[i]*prime[j];break;    
    32           }    
    33           else  phi[i*prime[j]]=phi[i]*(prime[j]-1);//其实这里prime[j]-1就是phi[prime[j]],利用了欧拉函数的积性    
    34        }    
    35    }    
    36 }
    37 
    38 int main()
    39 {        
    40     int n; 
    41     getphi();
    42     ans[2] = 1;
    43     for(int i = 3; i < N; i++){
    44         ans[i] = ans[i-1]+phi[i];
    45     }
    46     while(scanf("%d", &n) && n){
    47         printf("%lld
    ", ans[n]);
    48     }
    49 
    50     return 0;
    51 }
  • 相关阅读:
    面向对象三大特征------多态
    接口的概念
    面向对象(抽象类)
    面向对象三大特征------继承
    面向对象三大特征------封装
    成员变量和局部变量的区别
    20180822 ajax post 方式请求
    20180815 权限
    20180815 视图
    20180814 夜晚小目标
  • 原文地址:https://www.cnblogs.com/Penn000/p/7287387.html
Copyright © 2011-2022 走看看