zoukankan      html  css  js  c++  java
  • POJ1284(SummerTrainingDay04-K 原根)

    Primitive Roots

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 4505   Accepted: 2652

    Description

    We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
    Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

    Input

    Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

    Output

    For each p, print a single number that gives the number of primitive roots in a single line.

    Sample Input

    23
    31
    79
    

    Sample Output

    10
    8
    24
    

    Source

     
     1 //2017-08-04
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 
     7 using namespace std;
     8 
     9 int phi(int n){
    10     int ans = n;
    11     for(int i = 2; i*i <= n; i++){
    12         if(n%i==0){
    13             ans -= ans/i;
    14             while(n%i==0)
    15                 n /= i;
    16         }
    17     }
    18     if(n > 1)ans = ans - ans/n;
    19     return ans;
    20 }
    21 
    22 int main()
    23 {
    24     int num;
    25     while(scanf("%d", &num)!=EOF){
    26         printf("%d
    ", phi(num-1));
    27     }
    28 
    29     return 0;
    30 }
  • 相关阅读:
    程序员学习提高必看的一篇文章
    SpringAOP拦截器的代理机制
    springboot03_RabbitMQ
    Docker_02
    Docker_01
    Redis_02
    Redis_01
    关于Linux下内存和Swap
    密码学DAY2
    密码学DAY1_02
  • 原文地址:https://www.cnblogs.com/Penn000/p/7287401.html
Copyright © 2011-2022 走看看