zoukankan      html  css  js  c++  java
  • POJ1811(SummerTrainingDay04-G miller-rabin判断素性 && pollard-rho分解质因数)

    Prime Test

    Time Limit: 6000MS   Memory Limit: 65536K
    Total Submissions: 35528   Accepted: 9479
    Case Time Limit: 4000MS

    Description

    Given a big integer number, you are required to find out whether it's a prime number.

    Input

    The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

    Output

    For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

    Sample Input

    2
    5
    10
    

    Sample Output

    Prime
    2
    

    Source

     
      1 //2017-08-16
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <iostream>
      5 #include <algorithm>
      6 #define ll long long
      7 
      8 using namespace std;
      9 
     10 const int TIMES = 10;
     11 
     12 ll random0(ll n){
     13     return ((double)rand() / RAND_MAX*n + 0.5);
     14 }
     15 
     16 //快速乘a*b%mod
     17 ll quick_mul(ll a, ll b, ll mod){
     18     ll ans = 0;
     19     while(b){
     20         if(b&1){
     21             b--;
     22             ans = (ans+a)%mod;
     23         }
     24         b >>= 1;
     25         a = (a+a) % mod;
     26     }
     27     return ans;
     28 }
     29 
     30 //快速幂a^b%mod
     31 ll quick_pow(ll a, ll n, ll mod){
     32     ll ans = 1; 
     33     while(n){
     34         if(n&1)ans = quick_mul(ans, a, mod);
     35         a = quick_mul(a, a, mod);
     36         n >>= 1;
     37     }
     38     return ans;
     39 }
     40 
     41 bool witness(ll a, ll n){
     42     ll tmp = n-1;
     43     int i = 0;
     44     while(tmp % 2 == 0){
     45         tmp >>= 1;
     46         i++;
     47     }
     48     ll x = quick_pow(a, tmp, n);
     49     if(x == 1 || x == n-1)return true;
     50     while(i--){
     51         x = quick_mul(x, x, n);
     52         if(x == n-1)return true;
     53     }
     54     return false;
     55 }
     56 
     57 bool miller_rabin(ll n){
     58     if(n == 2)return true;
     59     if(n < 2 || n % 2 == 0)return false;
     60     for(int i  = 1; i <= TIMES; i++){
     61         ll a = random0(n-2)+1;
     62         if(!witness(a, n))
     63               return false;
     64     }
     65     return true;
     66 }
     67 
     68 //factor存放分解出来的素因数
     69 ll factor[1000];
     70 int tot;
     71 
     72 ll gcd(ll a, ll b){
     73     if(a == 0)return 1;
     74     if(a < 0)return gcd(-a, b);
     75     while(b){
     76         ll tmp = a % b;
     77         a = b;
     78         b = tmp;
     79     }
     80     return a;
     81 }
     82 
     83 ll pollard_rho(ll x, ll c){
     84     ll i = 1, k = 2;
     85     ll x0 = rand()%x, x1 = x0;
     86     while(1){
     87         i++;
     88         x0 = (quick_mul(x0, x0, x)+c)%x;
     89         ll d = gcd(x1-x0, x);
     90         if(d != 1 && d != x)return d;
     91         if(x1 == x0)return x;
     92         if(i == k){
     93             x1 = x0;
     94             k += k;
     95         }
     96     }
     97 }
     98 
     99 //对n分解质因数
    100 void decomposition_factor(ll n){
    101     if(miller_rabin(n)){
    102         factor[tot++] = n;
    103         return;
    104     }
    105     ll p = n;
    106     while(p >= n){
    107         p = pollard_rho(p, rand()%(n-1)+1);
    108     }
    109     decomposition_factor(p);
    110     decomposition_factor(n/p);
    111 }
    112 
    113 int main()
    114 {
    115     int T;
    116     scanf("%d", &T);
    117     while(T--){
    118         ll n;
    119         scanf("%lld", &n);
    120         if(miller_rabin(n))
    121               printf("Prime
    ");
    122         else{
    123             tot = 0;
    124             decomposition_factor(n);
    125             ll ans = factor[0];
    126             for(int i = 1; i < tot; i++)
    127                   if(factor[i] < ans)ans  = factor[i];
    128             printf("%lld
    ", ans);
    129         }
    130     }
    131 
    132     return 0;
    133 }
  • 相关阅读:
    Python解释器相关知识
    简单了解下Flask
    Scoket编程
    __file__的作用
    jquery编写可折叠列表
    浑浑噩噩的一天
    js实现杨辉三角
    js闭包
    python读取word表格
    HTMLTestRunner报告
  • 原文地址:https://www.cnblogs.com/Penn000/p/7372964.html
Copyright © 2011-2022 走看看