zoukankan      html  css  js  c++  java
  • HDU3829(KB10-J 二分图最大独立集)

    Cat VS Dog

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)
    Total Submission(s): 4039    Accepted Submission(s): 1458


    Problem Description

    The zoo have N cats and M dogs, today there are P children visiting the zoo, each child has a like-animal and a dislike-animal, if the child's like-animal is a cat, then his/hers dislike-animal must be a dog, and vice versa.
    Now the zoo administrator is removing some animals, if one child's like-animal is not removed and his/hers dislike-animal is removed, he/she will be happy. So the administrator wants to know which animals he should remove to make maximum number of happy children.
     

    Input

    The input file contains multiple test cases, for each case, the first line contains three integers N <= 100, M <= 100 and P <= 500.
    Next P lines, each line contains a child's like-animal and dislike-animal, C for cat and D for dog. (See sample for details)
     

    Output

    For each case, output a single integer: the maximum number of happy children.
     

    Sample Input

    1 1 2 C1 D1 D1 C1 1 2 4 C1 D1 C1 D1 C1 D2 D2 C1
     

    Sample Output

    1 3

    Hint

    Case 2: Remove D1 and D2, that makes child 1, 2, 3 happy.
     

     

    Source

     
    在有矛盾的男孩之间连边,有矛盾定义为两种情况:
      1.我喜欢的你不喜欢
      2.我不喜欢的你喜欢
    建图后,求最大的两两互不相连的顶点集合即为答案,即求图的最大独立集。
    一般图的最大独立集难求,转换为二分图,对男孩进行拆点,为i和p+i。若i和j有矛盾,则i与p+j、j与p+i连边。记得匹配数要除2。
     
    定理:二分图最大独立集 == 顶点数 - 最小顶点覆盖 == 顶点数 - 二分图最大匹配
     1 //2017-08-25
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 
     7 using namespace std;
     8 
     9 const int N = 2000;
    10 const int M = 500000;
    11 int head[N], tot;
    12 struct Edge{
    13     int to, next;
    14 }edge[M];
    15 
    16 void init(){
    17     tot = 0;
    18     memset(head, -1, sizeof(head));
    19 }
    20 
    21 void add_edge(int u, int v){
    22     edge[tot].to = v;
    23     edge[tot].next = head[u];
    24     head[u] = tot++;
    25 
    26     edge[tot].to = u;
    27     edge[tot].next = head[v];
    28     head[v] = tot++;
    29 }
    30 
    31 int n, m, p;
    32 string G[N];
    33 int matching[N];
    34 int check[N];
    35 
    36 bool dfs(int u){
    37     for(int i =  head[u]; i != -1; i = edge[i].next){
    38         int v = edge[i].to;
    39         if(!check[v]){//要求不在交替路
    40             check[v] = 1;//放入交替路
    41             if(matching[v] == -1 || dfs(matching[v])){
    42                 //如果是未匹配点,说明交替路为增广路,则交换路径,并返回成功
    43                 matching[u] = v;
    44                 matching[v] = u;
    45                 return true;
    46             }
    47         }
    48     }
    49     return false;//不存在增广路
    50 }
    51 
    52 //hungarian: 二分图最大匹配匈牙利算法
    53 //input: null
    54 //output: ans 最大匹配数
    55 int hungarian(){
    56     int ans = 0;
    57     memset(matching, -1, sizeof(matching));
    58     for(int u = 1; u <= p; u++){
    59         if(matching[u] == -1){
    60             memset(check, 0, sizeof(check));
    61             if(dfs(u))
    62                   ans++;
    63         }
    64     }
    65     return ans;
    66 }
    67 
    68 string like[N], dislike[N];
    69 
    70 int main()
    71 {
    72     std::ios::sync_with_stdio(false);
    73     //freopen("inputJ.txt", "r", stdin);
    74     while(cin>>n>>m>>p && n){
    75         init();
    76         for(int i = 1; i <= p; i++)
    77               cin>>like[i]>>dislike[i];
    78         for(int i = 2; i <= p; i++){
    79             for(int j = 1; j < i; j++){
    80                 if(like[i] == dislike[j] || dislike[i] == like[j]){
    81                     add_edge(i, p+j);
    82                     add_edge(j, p+i);
    83                 }
    84             }
    85         }
    86         cout<<p-hungarian()/2<<endl;
    87     }
    88 
    89     return 0;
    90 }
  • 相关阅读:
    Java程序猿之从菜鸟到职场高手的必看
    每日一小练——高速Fibonacci数算法
    myeclipse 那个版本号好用?
    C++ Primer 学习笔记_61_重载操作符与转换 --自增/自减操作符
    海量数据存储
    架设FLASH视频流server心得
    java中接口的定义与实现
    Oracle误删恢复
    第四届蓝桥杯C++B组国(决)赛真题
    第三届蓝桥杯JavaC组国(决)赛真题
  • 原文地址:https://www.cnblogs.com/Penn000/p/7429977.html
Copyright © 2011-2022 走看看