zoukankan      html  css  js  c++  java
  • HDU3715(二分+2-SAT)

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3184    Accepted Submission(s): 1035


    Problem Description

    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     

    Input

    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     

    Output

    For each test case, output the result in a single line.
     

    Sample Input

    3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
     

    Sample Output

    1 1 2
     

    Author

    CAO, Peng
     

    Source

     
    令 i 表示第i位为0,NOT i 表示第i位为1.
    c == 0, 则 A and B == 1
    c == 1, 则 A xor B == 0
    c == 2, 则 A xor B != 0
    建图,二分验证。
      1 //2017-08-27
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <iostream>
      5 #include <algorithm>
      6 #include <vector>
      7 #include <iomanip>
      8 #include <cmath>
      9 
     10 using namespace std;
     11 
     12 const int N = 5010;
     13 const int M = N*N;
     14 const double EPS = 1e-6;
     15 int head[N], rhead[N], tot, rtot;
     16 struct Edge{
     17     int to, next;
     18 }edge[M], redge[M];
     19 
     20 void init(){
     21     tot = 0;
     22     rtot = 0;
     23     memset(head, -1, sizeof(head));
     24     memset(rhead, -1, sizeof(rhead));
     25 }
     26 
     27 void add_edge(int u, int v){
     28     edge[tot].to = v;
     29     edge[tot].next = head[u];
     30     head[u] = tot++;
     31 
     32     redge[rtot].to = u;
     33     redge[rtot].next = rhead[v];
     34     rhead[v] = rtot++;
     35 }
     36 
     37 vector<int> vs;//后序遍历顺序的顶点列表
     38 bool vis[N];
     39 int cmp[N];//所属强连通分量的拓扑序
     40 
     41 //input: u 顶点
     42 //output: vs 后序遍历顺序的顶点列表
     43 void dfs(int u){
     44     vis[u] = true;
     45     for(int i = head[u]; i != -1; i = edge[i].next){
     46         int v = edge[i].to;
     47         if(!vis[v])
     48           dfs(v);
     49     }
     50     vs.push_back(u);
     51 }
     52 
     53 //input: u 顶点编号; k 拓扑序号
     54 //output: cmp[] 强连通分量拓扑序
     55 void rdfs(int u, int k){
     56     vis[u] = true;
     57     cmp[u] = k;
     58     for(int i = rhead[u]; i != -1; i = redge[i].next){
     59         int v = redge[i].to;
     60         if(!vis[v])
     61           rdfs(v, k);
     62     }
     63 }
     64 
     65 //Strongly Connected Component 强连通分量
     66 //input: n 顶点个数
     67 //output: k 强连通分量数;
     68 int scc(int n){
     69     memset(vis, 0, sizeof(vis));
     70     vs.clear();
     71     for(int u = 0; u < n; u++)
     72       if(!vis[u])
     73         dfs(u);
     74     int k = 0;
     75     memset(vis, 0, sizeof(vis));
     76     for(int i = vs.size()-1; i >= 0; i--)
     77       if(!vis[vs[i]])
     78         rdfs(vs[i], k++);
     79     return k;
     80 }
     81 
     82 int n, m;
     83 int a[10010], b[10010], c[10010];
     84 
     85 bool check(int len){
     86     init();
     87     for(int i = 0; i < len; i++){
     88         if(c[i] == 0){
     89             add_edge(a[i]+n, b[i]);
     90             add_edge(b[i]+n, a[i]);
     91         }else if(c[i] == 1){
     92             add_edge(a[i], b[i]);
     93             add_edge(a[i]+n, b[i]+n);
     94             add_edge(b[i], a[i]);
     95             add_edge(b[i]+n, a[i]+n);
     96         }else if(c[i] == 2){
     97             add_edge(a[i], b[i]+n);
     98             add_edge(b[i], a[i]+n);
     99         }
    100     }
    101     scc(n<<1);
    102     for(int i = 0; i < n; i++)
    103       if(cmp[i] == cmp[i+n])
    104         return false;
    105     return true;
    106 }
    107 
    108 int main()
    109 {
    110     std::ios::sync_with_stdio(false);
    111     //freopen("inputD.txt", "r", stdin);
    112     int T;
    113     cin>>T;
    114     while(T--){
    115         cin>>n>>m;
    116         for(int i = 0; i < m; i++)
    117           cin>>a[i]>>b[i]>>c[i];
    118         int l = 0, r = m, mid, ans;
    119         while(l <= r){
    120             mid = (l+r)/2;
    121             if(check(mid)){
    122                 ans = mid;
    123                 l = mid+1;
    124             }else
    125                   r = mid-1;
    126         }
    127         cout<<ans<<endl;
    128     }
    129 
    130     return 0;
    131 }
  • 相关阅读:
    axios基础用法
    CSS盒子模型
    前端跨域问题解决方案
    跨域-iframe
    swagger UI配置
    React安装和启动
    React 学习笔记
    redis学习笔记
    10个排序算法,待更新
    docker常用命令,持续更新。。。
  • 原文地址:https://www.cnblogs.com/Penn000/p/7440877.html
Copyright © 2011-2022 走看看