zoukankan      html  css  js  c++  java
  • HDU6198

    number number number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 118    Accepted Submission(s): 79


    Problem Description

    We define a sequence F:

     F0=0,F1=1;
     Fn=Fn1+Fn2 (n2).

    Give you an integer k, if a positive number n can be expressed by
    n=Fa1+Fa2+...+Fak where 0a1a2ak, this positive number is mjfgood. Otherwise, this positive number is mjfbad.
    Now, give you an integer k, you task is to find the minimal positive mjfbad number.
    The answer may be too large. Please print the answer modulo 998244353.
     

    Input

    There are about 500 test cases, end up with EOF.
    Each test case includes an integer k which is described above. (1k109)
     

    Output

    For each case, output the minimal mjfbad number mod 998244353.
     

    Sample Input

    1
     

    Sample Output

    4
     

    Source

     
    ans = F(2*n+1)-1
     
     1 //2017-09-10
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 #define LL long long
     7 #define MAXN 100
     8 
     9 using namespace std;
    10 
    11 const int MOD = 998244353;
    12 
    13 struct Matrix  
    14 {  
    15     LL a[MAXN][MAXN];  
    16     int r, c; 
    17 };  
    18 
    19 Matrix ori, res; 
    20 
    21 void init()  
    22 {  
    23     memset(res.a, 0, sizeof(res.a));  
    24     res.r = 2; res.c = 2;  
    25     for(int i = 1; i <= 2; i++)  
    26       res.a[i][i] = 1;  
    27     ori.r = 2; ori.c = 2;  
    28     ori.a[1][1] = ori.a[1][2] = ori.a[2][1] = 1;  
    29     ori.a[2][2] = 0;  
    30 }  
    31 
    32 Matrix multi(Matrix x, Matrix y)  
    33 {  
    34     Matrix z;  
    35     memset(z.a, 0, sizeof(z.a));  
    36     z.r = x.r, z.c = y.c;    
    37     for(int i = 1; i <= x.r; i++) 
    38     {  
    39         for(int k = 1; k <= x.c; k++)      
    40         {  
    41             if(x.a[i][k] == 0) continue;
    42             for(int j = 1; j<= y.c; j++)  
    43               z.a[i][j] = (z.a[i][j] + (x.a[i][k] * y.a[k][j]) % MOD) % MOD;  
    44         }  
    45     }  
    46     return z;  
    47 }  
    48 void Matrix_mod(int n)  
    49 {  
    50     while(n)  
    51     {  
    52         if(n & 1)  
    53           res = multi(ori, res);  
    54         ori = multi(ori, ori);  
    55         n >>= 1;  
    56     }  
    57     printf("%lld
    ", res.a[1][2]-1 % MOD);  
    58 }  
    59 
    60 int main()
    61 {
    62     int k;
    63     while(scanf("%d", &k) != EOF)
    64     {
    65         init();
    66         k++;
    67         Matrix_mod(2*k+1);
    68     }
    69     return 0;
    70 }
  • 相关阅读:
    Python购物车的实现课程
    第一天作业二 三级菜单的实现
    windows快捷键命令汇总整理
    python课程第一天作业1-模拟登录
    Java中的代理
    Java中的继承
    Java中的访问权限细谈
    Java中的参数列表
    Java中的this关键字老生常谈
    数据结构与算法Java描述 队列
  • 原文地址:https://www.cnblogs.com/Penn000/p/7502280.html
Copyright © 2011-2022 走看看