zoukankan      html  css  js  c++  java
  • poj 3281

    Language:
    Dining
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 11719   Accepted: 5387

    Description

    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

    Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

    Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

    Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

    Input

    Line 1: Three space-separated integers: NF, and D 
    Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow iwill drink.

    Output

    Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

    Sample Input

    4 3 3
    2 2 1 2 3 1
    2 2 2 3 1 2
    2 2 1 3 1 2
    2 1 1 3 3

    Sample Output

    3

    Hint

    One way to satisfy three cows is: 
    Cow 1: no meal 
    Cow 2: Food #2, Drink #2 
    Cow 3: Food #1, Drink #1 
    Cow 4: Food #3, Drink #3 
    The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

    Source

    #include <cstdio>
    #include <queue>
    #include <cstring>
    #include <cstdlib>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int N = 88888*4;
    const int oo = 0x3f3f3f3f;
    int head[N], start, End, cnt, vis[N];
    struct da
    {
        int v, flow, next;
    } as[N];
    void add(int u, int v, int flow)
    {
        as[cnt].v = v;
        as[cnt].flow = flow;
        as[cnt].next = head[u];
        head[u] = cnt++;
    }
    int bfs()
    {
        queue<int >Q;
        memset(vis, 0, sizeof(vis));
        vis[start] = 1;
        Q.push(start);
        while(!Q.empty())
        {
           int u = Q.front();
           Q.pop();
           if(u == End) return 1;
           for(int j = head[u]; j != -1; j = as[j].next)
           {
               int v = as[j].v;
               if(!vis[v] && as[j].flow)
               {
                   vis[v] = vis[u] + 1;
                   Q.push(v);
               }
           }
        }
        return 0;
    }
    int dfs(int u, int Maxflow)
    {
        int v, flow, uflow=0;
        if(u == End) return Maxflow;
        for(int j = head[u]; j != -1; j = as[j].next)
        {
            v = as[j].v;
            if(vis[v] == vis[u]+1 && as[j].flow)
            {
                flow = min(as[j].flow, Maxflow-uflow);
                flow = dfs(v, flow);
                as[j].flow -= flow;
                as[j^1].flow += flow;
                uflow += flow;
                if(uflow == Maxflow)break;
            }
        }
        if(uflow == 0)vis[u] = 0;
        return uflow;
    }
    int dinic()
    {
        int ans = 0;
        while(bfs())
            ans += dfs(start, oo);
        return ans;
    }
    int main()
    {
        int N, F, D, i, j, num, ans, fi, di;
        while(~scanf("%d %d %d", &N, &F, &D))
        {
            memset(head, -1, sizeof(head));
            cnt = 0;
            start = 0;
            End = F+D+2*N+2;
            for(i = 1; i <= N; i++)
            {
                scanf("%d %d", &fi, &di);
                for(j = 1; j <= fi; j++)
                {
                    scanf("%d", &num);
                    add(num, F+i, 1);
                    add(F+i, num, 0);
                }
                for(j = 1; j <= di; j++)
                {
                    scanf("%d", &num);
                    add(F+i+N, F+2*N+num, 1);
                    add(F+2*N+num, F+N+i, 0);
                }
                add(F+i, F+N+i, 1);
                add(F+N+i, F+i, 0);
            }
            for(i = 1; i <= F; i++)
            {
                add(start, i, 1);
                add(i, start, 0);
            }
            for(i = 1; i <= D; i++)
            {
                add(2*N+F+i, End, 1);
                add(End, 2*N+F+i, 0);
            }
            ans = dinic();
            printf("%d
    ", ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    20174309徐宁艺 Exp7 网络欺诈防范
    20174309徐宁艺 Exp6 MSF基础应用
    20174309徐宁艺 Exp5 信息搜集与漏洞扫描
    20174309徐宁艺 Exp4 恶意代码分析
    20174309徐宁艺 Exp3 免杀原理与实践
    20174309徐宁艺 Exp2 后门原理与实践
    20174309徐宁艺 Exp1 PC平台逆向破解
    Kali Linux安装
    福大软工 · 最终作业
    福大软工 · 第十二次作业
  • 原文地址:https://www.cnblogs.com/PersistFaith/p/4743469.html
Copyright © 2011-2022 走看看