zoukankan      html  css  js  c++  java
  • Almost Sorted Array

    Problem Description
    We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, selection sort, bubble sort, etc. But sometimes it is an overkill to use these algorithms for an almost sorted array.

    We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array a1,a2,…,an, is it almost sorted?
     

    Input
    The first line contains an integer T indicating the total number of test cases. Each test case starts with an integer n in one line, then one line with n integers a1,a2,…,an.

    1≤T≤2000
    2≤n≤105
    1≤ai≤105
    There are at most 20 test cases with n>1000.
     

    Output
    For each test case, please output "`YES`" if it is almost sorted. Otherwise, output "`NO`" (both without quotes).
     

    Sample Input

    3
    3
    2 1 7
    3
    3 2 1
    5
    3 1 4 1 5

     

    Sample Output

    YES
    YES
    NO

    题意:给定一个序列 问:去掉一个元素能否成为有序序列。

    #include<cstdio>
    #include<cstring>
    #include<stack>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int oo = 1e9+7;
    const int maxn = 1e6+7;
    typedef long long LL;
    int ac[maxn];
    void up(int n, int &flag, int &cnt)
    {
        int i, p=1, index=1;///index标记不符合题意的点的下标
        flag = cnt = 0;///cnt标记不符合题意的点的个数
        for(i = 2; i <= n; i++)
        {
            if(ac[i] >= ac[i-1]) p++;
            else
            {
                cnt++;
                index = i;
            }
        }
        if(p == n) flag = 1;///原序列符合要求
        if(cnt == 1)///只存在一个不符合题意的点
        {
            if(index == n || index==2 || ac[index-1] <= ac[index+1] || ac[index-2] <= ac[index])
                flag = 1;
        }
        if(cnt == 0) flag = 1;
    }
    void down(int n, int &flag, int &cnt)
    {
        int i, p=1, index=1;///index标记不符合题意的点的下标
        flag = cnt = 0;///cnt标记不符合题意的点的个数
        for(i = 2; i <= n; i++)
        {
            if(ac[i] <= ac[i-1]) p++;
            else
            {
                cnt++;
                index = i;
            }
        }
        if(p == n) flag = 1;///原序列符合要求
        if(cnt == 1)///只存在一个不符合题意的点
        {
            if(index == n || index==2 || ac[index-1] >= ac[index+1] || ac[index-2] >= ac[index])
                flag = 1;
        }
        if(cnt == 0) flag = 1;
    }
    int main()
    {
        int T, i, n, flag, cnt;
        scanf("%d", &T);
        while(T--)
        {
            scanf("%d", &n);
            for(i = 1; i <= n; i++)
                scanf("%d", &ac[i]);
            flag = cnt = 0;
            up(n, flag, cnt);///上升序列
            if(flag == 0)
            down(n, flag, cnt);///下降序列
            if(flag) printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }
    
  • 相关阅读:
    《构建之法》第1.2.3章读后感
    回顾并总结关于复利计算器的三次实验
    实验0、了解和熟悉操作系统实验
    0302思考并回答一些问题
    递归下降语法分析程序设计
    1203有穷自动机的构造与识别
    评论集锦
    C语言文法定义与C程序的推导过程
    Vue简介教程(四)[自定义指令 | 路由 | 过渡 & 动画]
    Vue简介教程(三)[事件处理 | 表单 | 组件]
  • 原文地址:https://www.cnblogs.com/PersistFaith/p/4928050.html
Copyright © 2011-2022 走看看