zoukankan      html  css  js  c++  java
  • Almost Sorted Array

    Problem Description
    We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, selection sort, bubble sort, etc. But sometimes it is an overkill to use these algorithms for an almost sorted array.

    We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array a1,a2,…,an, is it almost sorted?
     

    Input
    The first line contains an integer T indicating the total number of test cases. Each test case starts with an integer n in one line, then one line with n integers a1,a2,…,an.

    1≤T≤2000
    2≤n≤105
    1≤ai≤105
    There are at most 20 test cases with n>1000.
     

    Output
    For each test case, please output "`YES`" if it is almost sorted. Otherwise, output "`NO`" (both without quotes).
     

    Sample Input

    3
    3
    2 1 7
    3
    3 2 1
    5
    3 1 4 1 5

     

    Sample Output

    YES
    YES
    NO

    题意:给定一个序列 问:去掉一个元素能否成为有序序列。

    #include<cstdio>
    #include<cstring>
    #include<stack>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int oo = 1e9+7;
    const int maxn = 1e6+7;
    typedef long long LL;
    int ac[maxn];
    void up(int n, int &flag, int &cnt)
    {
        int i, p=1, index=1;///index标记不符合题意的点的下标
        flag = cnt = 0;///cnt标记不符合题意的点的个数
        for(i = 2; i <= n; i++)
        {
            if(ac[i] >= ac[i-1]) p++;
            else
            {
                cnt++;
                index = i;
            }
        }
        if(p == n) flag = 1;///原序列符合要求
        if(cnt == 1)///只存在一个不符合题意的点
        {
            if(index == n || index==2 || ac[index-1] <= ac[index+1] || ac[index-2] <= ac[index])
                flag = 1;
        }
        if(cnt == 0) flag = 1;
    }
    void down(int n, int &flag, int &cnt)
    {
        int i, p=1, index=1;///index标记不符合题意的点的下标
        flag = cnt = 0;///cnt标记不符合题意的点的个数
        for(i = 2; i <= n; i++)
        {
            if(ac[i] <= ac[i-1]) p++;
            else
            {
                cnt++;
                index = i;
            }
        }
        if(p == n) flag = 1;///原序列符合要求
        if(cnt == 1)///只存在一个不符合题意的点
        {
            if(index == n || index==2 || ac[index-1] >= ac[index+1] || ac[index-2] >= ac[index])
                flag = 1;
        }
        if(cnt == 0) flag = 1;
    }
    int main()
    {
        int T, i, n, flag, cnt;
        scanf("%d", &T);
        while(T--)
        {
            scanf("%d", &n);
            for(i = 1; i <= n; i++)
                scanf("%d", &ac[i]);
            flag = cnt = 0;
            up(n, flag, cnt);///上升序列
            if(flag == 0)
            down(n, flag, cnt);///下降序列
            if(flag) printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }
    
  • 相关阅读:
    Mysql 取整的方法
    方法、选择比努力更重要, 所以既要低头干活,更要抬头看路!
    mysql索引
    MYSQL 存储过程 多表更新异常捕捉和异常处理方式
    JavaScript中in的用法
    中美印日四国程序员比较
    ubuntu下Django的下载与安装(三种方法)
    ubuntu下下载并安装H265(hm.x.x代码和X265代码)
    s3c-u-boot-1.1.6源码分析之一start.s
    s3c-u-boot-1.1.6源码分析
  • 原文地址:https://www.cnblogs.com/PersistFaith/p/4928050.html
Copyright © 2011-2022 走看看