zoukankan      html  css  js  c++  java
  • 反卷积(Transposed Convolution)

    反卷积的具体计算步骤

    令图像为

    卷积核为

    case 1

    如果要使输出的尺寸是 5x5,步数 stride=2 ,tensorflow 中的命令为:

    transpose_conv = tf.nn.conv2d_transpose(value=input, 
                                            filter=kernel, 
                                            output_shape=[1,5,5,1], 
                                            strides=2, 
                                            padding='SAME')

    当执行 transpose_conv 命令时,tensorflow 会先计算卷积类型、输入尺寸、步数和输出尺寸之间的关系是否成立,如果不成立,会直接提示错误,如果成立,执行如下操作:

    1. 现根据步数strides对输入的内部进行填充,这里strides可以理解成输入放大的倍数,即在input的每个元素之间填充 0,0的个数n与strides的关系为:n=strides-1

    例如这里举例的strides=2,即在input的每个元素之间填1个0:

    [公式]

    2. 接下来,用卷积核kernel对填充后的输入inputpad进行步长stride=1的正向卷积,根据正向卷积输出尺寸公式: [公式] 得到输出尺寸是5x5,反卷积公式中我们给出的输出尺寸参数output_shape也是为5,两者相同,所以可以进行计算,结果为:

    [公式]

    与 tensorflow 的运行结果相同。

    case 2

    我们将 case 1 中的输出尺寸output_shape改成6,其他参数均不变,tensorflow 中的命令为:

    transpose_conv = tf.nn.conv2d_transpose(value=input, 
                                            filter=kernel, 
                                            output_shape=[1,6,6,1], 
                                            strides=2, 
                                            padding='SAME')

    卷积类型是 same,我们首先在外围填充一圈0:

    [公式]

    这时发现,填充后的输入尺寸与3x3的卷积核卷积后的输出尺寸是5x5,没有达到output_shape的6x6,这就需要继续填充0,tensorflow 的计算规则是优先在左侧和上侧填充一排0,填充后的输入变为:

    [公式]

    接下来,再对这个填充后的输入与3x3的卷积核卷积,结果为:

    [公式]

    与 tensorflow 的运行结果相同。

    参考资料:

    https://zhuanlan.zhihu.com/p/48501100

  • 相关阅读:
    [BZOJ2839:]集合计数
    [BZOJ2863:]愤怒的元首
    [BZOJ:3162]:独钓寒江雪
    PHP数据库基础(简单的)
    PHP数组创建和遍历(基础)
    中缀表达式转换为前、后缀表达式转化简单的技巧[转]
    PHP网页简单的计算机源代码
    JS确认取消按钮使用
    js(JavaScript)使用${pageContext.request.contextPath}报错
    易游验证怎么配置?易游验证怎么使用!!
  • 原文地址:https://www.cnblogs.com/Peyton-Li/p/11982474.html
Copyright © 2011-2022 走看看