zoukankan      html  css  js  c++  java
  • 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

    Example:

    Input: "babad"

    Output: "bab"

    Note: "aba" is also a valid answer.

     

    Example:

    Input: "cbbd"

    Output: "bb"

     

    分析:

    方法一:暴力求解

      遍历字符串,判断以每一个字符为起始的子串是否为回文字符串,记录起始位置和长度。这是最容易想到的方法,但是时间复杂度较大。

    方法二:动态规划

      p[i][j]表示以第i个字符开始,第j个字符结束的子串是否为回文字符串,p[i][j]=1表示是回文字符串,p[i][j]=0表示不是回文字符串。起始状态p[i][i]=1

    转移方程为:p[i][j]=1 if p[i+1][j-1] == 1 and s[i]==s[j] else 0。此方法时间复杂度为

    class Solution(object):
        def longestPalindrome(self, s):
            """
            :type s: str
            :rtype: str
            """
            l = len(s)
            maxlen = 1
            start = 0
            p = [[0]*l for i in range(l)]
            for i in range(l):
                p[i][i]=1
                if i < l-1 and s[i] == s[i+1]:
                    p[i][i+1] = 1
                    maxlen = 2
                    start = i
            for length in range(3,l+1):
                for i in range(l-length+1):
                    j = i + length -1
                    if p[i+1][j-1]==1 and s[i] == s[j]:
                        p[i][j] = 1
                        maxlen = length
                        start = i
            return s[start:start+maxlen]

     

    方法三:中心扩展

      把字符串中的每个字母作为中心,对称地向两边扩展,但要考虑两种情况,1、如aba,长度为奇数。2、如abba,长度为偶数的。这种方法的时间复杂度为

    class Solution(object):
        def longestPalindrome(self, s):
            """
            :type s: str
            :rtype: str
            """
            maxlen = 1
            start = 0
            for i in range(len(s)):
                j = i-1
                k = i+1
                while j>=0 and k <len(s) and s[j] == s[k]:
                    if k-j+1 >= maxlen:
                        maxlen = k-j+1
                        start = j
                    j -= 1
                    k += 1
            for i in range(len(s)):
                j = i
                k = i+1
                while j >= 0 and k < len(s) and s[j] == s[k]:
                    if k-j+1 >= maxlen:
                        maxlen = k-j+1
                        start = j
                    j -= 1
                    k += 1
            return s[start:start+maxlen]

      

     

  • 相关阅读:
    2019 ECfianl
    Codeforces Round #610 (Div. 2)
    IOS设计模式之三:MVC模式
    MVC3快速搭建Web应用(二)
    IOS设计模式之四:观察者模式
    MVC3快速搭建Web应用(一)
    Three20 NetWork
    IOS设计模式之一:单例模式
    IOS设计模式之二:Delegate模式
    写博客的意义
  • 原文地址:https://www.cnblogs.com/Peyton-Li/p/7643473.html
Copyright © 2011-2022 走看看