1. https://zhuanlan.zhihu.com/p/34042498 深度解密换脸应用Deepfake
2. 在 1 里面提到的PixelShuffle,具体见参考3:
https://mathematica.stackexchange.com/questions/181587/how-to-define-a-pixelshuffle-layer
一边Upsample一边Convolve:Efficient Sub-pixel-convolutional-layers详解
https://oldpan.me/archives/upsample-convolve-efficient-sub-pixel-convolutional-layers
正常情况下,卷积操作会使feature map的高和宽变小。但当我们的stride=(1/r) < 1时,可以让卷积后的feature map的高和宽变大——即分辨率增大,这个新的操作叫做sub-pixel convolution,具体原理可以看PixelShuffle《Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
》的论文。
pixelshuffle算法的实现流程如上图,其实现的功能是:将一个H×W的低分辨率输入图像(LowResolution),通过Sub-pixel操作将其变为rH x rW的高分辨率图像(High Resolution)。
在1中提到的PG-GAN
4. PyTorch学习笔记(10)——上采样和PixelShuffle
https://blog.csdn.net/g11d111/article/details/82855946
5. faceswap blog
https://blog.csdn.net/weixin_41965898/article/details/84930788
参考:
1. CNN概念之上采样,反卷积,Unpooling概念解释
https://blog.csdn.net/g11d111/article/details/82350563
2. Visualizing and Understanding Convolutional Networks
https://arxiv.org/pdf/1311.2901v3.pdf
3. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
【这篇文章的核心—Efficient Sub-pixel Convolution】
4.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
5【超分辨率】Efficient Sub-Pixel Convolutional Neural Network【Sub-Pixel / PS: periodic shuffling】
https://blog.csdn.net/shwan_ma/article/details/78440394
6. PixelShuffle的含义