深度剖析网络协议栈中的 socket 函数,可以说是把前面介绍的串联起来,将网络协议栈各层关联起来。
应用层 |
FTP |
SMTP |
HTTP |
... |
|
传输层 |
TCP |
UDP |
|||
网络层 |
IP ICMP |
ARP |
|||
链路层 |
以太网 |
令牌环 |
FDDI |
... |
|
|
1、应用层——socket 函数
为了执行网络I/O,一个进程必须做的第一件事就是调用socket函数,指定期望的通信协议类型。该函数只是作为一个简单的接口函数供用户调用,调用该函数后将进入内核栈进行系统调用sock_socket 函数。
- #include <sys/socket.h>
- int socket(int family, int type, int protocol);
- /*返回:非负描述字——成功, -1——出错
- 其中family参数指明协议族,type参数指明套接口类型,后面protocol通常设为0,以选择所给定family 和 type组合的系统缺省值*/
2、BSD Socket 层——sock_socket 函数
从应用层进入该函数是通过一个共同的入口函数 sys_socket
- /*
- * System call vectors. Since I (RIB) want to rewrite sockets as streams,
- * we have this level of indirection. Not a lot of overhead, since more of
- * the work is done via read/write/select directly.
- *
- * I'm now expanding this up to a higher level to separate the assorted
- * kernel/user space manipulations and global assumptions from the protocol
- * layers proper - AC.
- */
- //本函数是网络栈专用操作函数集的总入口函数,主要是将请求分配,调用具体的底层函数进行处理
- asmlinkage int sys_socketcall(int call, unsigned long *args)
- {
- int er;
- switch(call)
- {
- case SYS_SOCKET://socket函数
- er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
- if(er)
- return er;
- return(sock_socket(get_fs_long(args+0),
- get_fs_long(args+1),//返回地址上的值
- get_fs_long(args+2)));//调用sock_socket函数
- ……
- }
下面就是sock_socket 函数主体
- /*
- * 系统调用,创建套接字socket。涉及到sock结构的创建.
- */
- static int sock_socket(int family, int type, int protocol)
- {
- int i, fd;
- struct socket *sock;
- struct proto_ops *ops;
- /* 匹配应用程序调用socket()函数时指定的协议 */
- for (i = 0; i < NPROTO; ++i)
- {
- if (pops[i] == NULL) continue;
- if (pops[i]->family == family) //设置域
- break;
- }
- //没有匹配的协议,则出错退出
- if (i == NPROTO)
- {
- return -EINVAL;
- }
- //根据family输入参数决定域操作函数集用于ops字段的赋值
- //操作函数集是跟域相关的,不同的域对应不同的操作函数集
- ops = pops[i];
- /*
- * Check that this is a type that we know how to manipulate and
- * the protocol makes sense here. The family can still reject the
- * protocol later.
- */
- //套接字类型检查
- if ((type != SOCK_STREAM && type != SOCK_DGRAM &&
- type != SOCK_SEQPACKET && type != SOCK_RAW &&
- type != SOCK_PACKET) || protocol < 0)
- return(-EINVAL);
- /*
- * Allocate the socket and allow the family to set things up. if
- * the protocol is 0, the family is instructed to select an appropriate
- * default.
- */
- //分配socket套接字结构
- if (!(sock = sock_alloc()))
- {
- printk("NET: sock_socket: no more sockets ");
- return(-ENOSR); /* Was: EAGAIN, but we are out of
- system resources! */
- }
- //指定对应类型,协议,以及操作函数集
- sock->type = type;
- sock->ops = ops;
- //分配下层sock结构,sock结构是比socket结构更底层的表示一个套接字的结构
- //前面博文有说明:http://blog.csdn.net/wenqian1991/article/details/21740945
- //socket是通用的套接字结构体,而sock与具体使用的协议相关
- if ((i = sock->ops->create(sock, protocol)) < 0) //这里调用下层函数 create
- {
- sock_release(sock);//出错回滚销毁处理
- return(i);
- }
- //分配一个文件描述符并在后面返回给应用层序作为以后的操作句柄
- if ((fd = get_fd(SOCK_INODE(sock))) < 0)
- {
- sock_release(sock);
- return(-EINVAL);
- }
- return(fd);//这个就是我们应用系统使用的套接字描述符
- }
该要介绍的注释里,已经说明白了,可以看到,该函数又将调用下一层函数 create。(网络栈就是这样,上层调用下层函数)
sock_socket 函数内部还调用了一个函数 sock_alloc(),该函数主要是分配一个 socket 套接字结构(实际上找到一个空闲的inode结构,socket结构已经包含在inode结构中)
- /*
- * 分配一个socket结构
- */
- struct socket *sock_alloc(void)
- {
- struct inode * inode;
- struct socket * sock;
- inode = get_empty_inode();//分配一个inode对象
- if (!inode)
- return NULL;
- //获得的inode结构的初始化
- inode->i_mode = S_IFSOCK;
- inode->i_sock = 1;
- inode->i_uid = current->uid;
- inode->i_gid = current->gid;
- //可以看出socket结构体的实体空间,就已经存在了inode结构中的union类型中,
- //所以无需单独的开辟空间分配一个socket 结构
- sock = &inode->u.socket_i;//这里把inode的union结构中的socket变量地址传给sock
- sock->state = SS_UNCONNECTED;
- sock->flags = 0;
- sock->ops = NULL;
- sock->data = NULL;
- sock->conn = NULL;
- sock->iconn = NULL;
- sock->next = NULL;
- sock->wait = &inode->i_wait;
- sock->inode = inode;//回绑
- sock->fasync_list = NULL;
- sockets_in_use++;//系统当前使用的套接字数量加1
- return sock;
- }
3、INET Socket 层——inet_create 函数
- /*
- * Create an inet socket.
- *
- * FIXME: Gcc would generate much better code if we set the parameters
- * up in in-memory structure order. Gcc68K even more so
- */
- //该函数被上层sock_socket函数调用,用于创建一个socket套接字对应的sock结构并对其进行初始化
- //socket是通用结构,sock是具体到某种协议的结构
- //代码是一大串,功能就是建立套接字对应的sock结构并对其进行初始化
- static int inet_create(struct socket *sock, int protocol)
- {
- struct sock *sk;
- struct proto *prot;
- int err;
- //分配一个sock结构,内存分配一个实体
- sk = (struct sock *) kmalloc(sizeof(*sk), GFP_KERNEL);
- if (sk == NULL)
- return(-ENOBUFS);
- sk->num = 0;//本地端口号
- sk->reuse = 0;
- //根据类型进行相关字段的赋值
- //关于哪种类型与协议的对应关系,请参考<UNP 卷1>,有些类型就只能和某种协议对应
- switch(sock->type)
- {
- case SOCK_STREAM:
- case SOCK_SEQPACKET:
- if (protocol && protocol != IPPROTO_TCP)
- {
- kfree_s((void *)sk, sizeof(*sk));
- return(-EPROTONOSUPPORT);
- }
- protocol = IPPROTO_TCP;//tcp协议
- sk->no_check = TCP_NO_CHECK;
- //这个prot变量表明了套接字使用的是何种协议
- //然后使用的则是对应协议的操作函数
- prot = &tcp_prot;
- break;
- case SOCK_DGRAM:
- if (protocol && protocol != IPPROTO_UDP)
- {
- kfree_s((void *)sk, sizeof(*sk));
- return(-EPROTONOSUPPORT);
- }
- protocol = IPPROTO_UDP;//udp协议
- sk->no_check = UDP_NO_CHECK;//不使用校验
- prot=&udp_prot;
- break;
- case SOCK_RAW:
- if (!suser()) //超级用户才能处理
- {
- kfree_s((void *)sk, sizeof(*sk));
- return(-EPERM);
- }
- if (!protocol)// 原始套接字类型,这里表示端口号
- {
- kfree_s((void *)sk, sizeof(*sk));
- return(-EPROTONOSUPPORT);
- }
- prot = &raw_prot;
- sk->reuse = 1;
- sk->no_check = 0; /*
- * Doesn't matter no checksum is
- * performed anyway.
- */
- sk->num = protocol;//本地端口号
- break;
- case SOCK_PACKET:
- if (!suser())
- {
- kfree_s((void *)sk, sizeof(*sk));
- return(-EPERM);
- }
- if (!protocol)
- {
- kfree_s((void *)sk, sizeof(*sk));
- return(-EPROTONOSUPPORT);
- }
- prot = &packet_prot;
- sk->reuse = 1;
- sk->no_check = 0; /* Doesn't matter no checksum is
- * performed anyway.
- */
- sk->num = protocol;
- break;
- default://不符合以上任何类型,则返回
- kfree_s((void *)sk, sizeof(*sk));
- return(-ESOCKTNOSUPPORT);
- }
- sk->socket = sock;//建立与其对应的socket之间的关系
- #ifdef CONFIG_TCP_NAGLE_OFF
- sk->nonagle = 1;//如果定义了Nagle算法
- #else
- sk->nonagle = 0;
- #endif
- //各种初始化
- //这里是sock结构
- sk->type = sock->type;
- sk->stamp.tv_sec=0;
- sk->protocol = protocol;
- sk->wmem_alloc = 0;
- sk->rmem_alloc = 0;
- sk->sndbuf = SK_WMEM_MAX;
- sk->rcvbuf = SK_RMEM_MAX;
- sk->pair = NULL;
- sk->opt = NULL;
- sk->write_seq = 0;
- sk->acked_seq = 0;
- sk->copied_seq = 0;
- sk->fin_seq = 0;
- sk->urg_seq = 0;
- sk->urg_data = 0;
- sk->proc = 0;
- sk->rtt = 0; /*TCP_WRITE_TIME << 3;*/
- sk->rto = TCP_TIMEOUT_INIT; /*TCP_WRITE_TIME*/
- sk->mdev = 0;
- sk->backoff = 0;
- sk->packets_out = 0;
- sk->cong_window = 1; /* start with only sending one packet at a time. */
- sk->cong_count = 0;
- sk->ssthresh = 0;
- sk->max_window = 0;
- sk->urginline = 0;
- sk->intr = 0;
- sk->linger = 0;
- sk->destroy = 0;
- sk->priority = 1;
- sk->shutdown = 0;
- sk->keepopen = 0;
- sk->zapped = 0;
- sk->done = 0;
- sk->ack_backlog = 0;
- sk->window = 0;
- sk->bytes_rcv = 0;
- sk->state = TCP_CLOSE;
- sk->dead = 0;
- sk->ack_timed = 0;
- sk->partial = NULL;
- sk->user_mss = 0;
- sk->debug = 0;
- /* this is how many unacked bytes we will accept for this socket. */
- sk->max_unacked = 2048; /* needs to be at most 2 full packets. */
- /* how many packets we should send before forcing an ack.
- if this is set to zero it is the same as sk->delay_acks = 0 */
- sk->max_ack_backlog = 0;
- sk->inuse = 0;
- sk->delay_acks = 0;
- skb_queue_head_init(&sk->write_queue);
- skb_queue_head_init(&sk->receive_queue);
- sk->mtu = 576;//最大传输单元
- sk->prot = prot;
- sk->sleep = sock->wait;
- sk->daddr = 0;//远端地址
- sk->saddr = 0 /* 本地地址 */;
- sk->err = 0;
- sk->next = NULL;
- sk->pair = NULL;
- sk->send_tail = NULL;
- sk->send_head = NULL;
- sk->timeout = 0;
- sk->broadcast = 0;
- sk->localroute = 0;
- init_timer(&sk->timer);
- init_timer(&sk->retransmit_timer);
- sk->timer.data = (unsigned long)sk;
- sk->timer.function = &net_timer;
- skb_queue_head_init(&sk->back_log);
- sk->blog = 0;
- sock->data =(void *) sk;
- //下面是sock结构中tcp首部初始化
- sk->dummy_th.doff = sizeof(sk->dummy_th)/4;
- sk->dummy_th.res1=0;
- sk->dummy_th.res2=0;
- sk->dummy_th.urg_ptr = 0;
- sk->dummy_th.fin = 0;
- sk->dummy_th.syn = 0;
- sk->dummy_th.rst = 0;
- sk->dummy_th.psh = 0;
- sk->dummy_th.ack = 0;
- sk->dummy_th.urg = 0;
- sk->dummy_th.dest = 0;
- //ip部分
- sk->ip_tos=0;
- sk->ip_ttl=64;
- #ifdef CONFIG_IP_MULTICAST
- sk->ip_mc_loop=1;
- sk->ip_mc_ttl=1;
- *sk->ip_mc_name=0;
- sk->ip_mc_list=NULL;
- #endif
- sk->state_change = def_callback1;
- sk->data_ready = def_callback2;
- sk->write_space = def_callback3;
- sk->error_report = def_callback1;
- if (sk->num) //如果分配了本地端口号
- {
- /*
- * It assumes that any protocol which allows
- * the user to assign a number at socket
- * creation time automatically
- * shares.
- */
- //将具有确定端口号的新sock结构加入到sock_array数组表示的sock结构链表中
- put_sock(sk->num, sk);//实际上这里确定的端口号一般为初始化0
- sk->dummy_th.source = ntohs(sk->num);//tcp首部源端地址,就是端口号
- //这里需要进行字节序转换,网络字节序转主机字节序
- }
- if (sk->prot->init) //根据不同协议类型,调用对应init函数
- {
- err = sk->prot->init(sk);//调用相对应4层协议的初始化函数
- if (err != 0)
- {
- destroy_sock(sk);//出错了,就销毁
- return(err);
- }
- }
- return(0);
- }
到这里一个 socket 套接字就创建完成了
可以看出socket 套接字的创建过程为:socket() -> sock_socket() -> inet_create()
我们简单的总结一下这几个函数的功能:
sock_socket() 内部的主要结构是 socket 结构体,其主要负责socket 结构体的创建(sock_alloc())和初始化,以及指定socket套接字的类型和操作函数集,然后分配一个文件描述符作为socket套接字的操作句柄,该描述符就是我们常说的套接字描述符。socket 的创建主要是分配一个inode 对象来说实现的。inode 对面内部有一个 union 类型变量,里面包含了各种类型的结构体,这里采用的 socket 类型,然后二者建立关联,inode中的union采用socket,socket结构中的inode指针指向该inode对象。
inet_create() 内部的主要结构是 sock 结构体,sock 结构体比socket 结构更显复杂,其使用范围也更为广泛,socket 结构体是一个通用的结构,不涉及到具体的协议,而sock 结构则与具体的协议挂钩,属于具体层面上的一个结构。inet_create 函数的主要功能则是创建一个 sock 结构(kmalloc())然后根据上层传值下来的协议(通常是类型与地址族组合成成对应的协议)进行初始化。最后将创建好的 sock 结构插入到 sock 表中。
网络栈的更下层用到的套接字就是 sock 结构体,在inet_create 函数中sock 套接字已经创建且初始化,socket() 至此完成。
有了源码,更清楚的了解到socket 函数的功能:创建套接字(sock struct),指定期望的通信协议类型。
到了这一步,套接字拥有自己的实体部分,指定了通信协议类型,但是既没有绑定本地地址信息(ip地址和端口号),也不知道对端的地址信息。