zoukankan      html  css  js  c++  java
  • Tensorflow游乐场

    昨天,Google发布了Tensorflow游乐场。Tensorflow是Google今年推出的机器学习开源平台。而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理。今天,就让硅谷周边带你一起去Tensorflow游乐场快乐地玩耍吧!
     
    昨天,Google深度学习部门Google Brain的掌门人,也是Google里受万众景仰的神级别工程师Jeff Dean,在Google Plus上发布了Tensorflow游乐场的消息:

    于是小伙伴们都十分激动地去Tensorflow的网站上玩神经网络了!游乐场的地址是:http://playground.tensorflow.org。让我们快点一起去看看游乐场里有哪些好玩的东东吧。
     
    一打开网站,就看见上面的标语:

    “在你的浏览器中就可以玩神经网络!不用担心,怎么玩也玩不坏哦!”
     
    这简直太令人振奋了!面对这么多可以随便点的按钮,咱们从哪儿开始呢?

    首先让我们来看看数据。在这个游乐场中,我们有4种不同形态的数据可以玩:

    每组数据,都是不同形态分布的一群点。每一个点,都与生俱来了2个特征:x1和x2,表示点的位置。而我们数据中的点有2类:橙色和蓝色。我们的神经网络的目标,就是通过训练,知道哪些位置的点是橙色、哪些位置的点是蓝色。
     
    如果橙色是橙子,蓝色是蓝莓。假设我们有2000个散落在各处的橙子和蓝莓。前1000个,我们知道坐标(1,1)的是蓝莓,(2,2)的是橙子,(0.5,0.5)的是蓝莓等等。我们要用这些信息来训练我们的神经网络,让它能够准确地预测出后1000个哪些是橙子、哪些是蓝莓。
     
    看上面的4组数据,我们会发现,前3中都能相对简单地区分开,而最后一组螺旋数据会是最难的。
     
    Tensorflow游乐场中的数据十分灵活。我们可以调整noise(干扰)的大小,还可以改变训练数据和测试数据的比例多少。下图是不同noise的数据分布。

    当我们把每一个数据点的信息喂给机器学习系统时,我们需要做feature extraction,也就是特征提取。如果我们真的是在区分蓝莓和橙子的话,大小、颜色等等都会是我们的特征。而这里,每一个点都有x1和x2两个特征。除此之外,由这两个特征还可以衍生出许多其他特征:

    抽象来说,我们的机器学习classifier(分类器)其实是在试图画一条或多条线。如果我们能够100%正确地区分蓝色和橙色的点,蓝色的点会在线的一边,橙色的会在另一边。
     
    上面这些图其实非常的直观。第一张图中,如果x1作为我们的特征,我们其实就是在画一条和x1轴垂直的线。当我们改变参数时,其实就是在将这条线左右移动。其他的特征也是如此。
     
    很容易可以看出,我们需要智能地结合这其中一种或多种的特征,才能够成功地将蓝色点和橙色点分类。这样的feature extraction,其实往往是机器学习应用中最难的部分。好在我们有神经网络,它能够帮我们完成大部分的任务。
     
    如果我们选定x1和x2作为特征,我们神经网络的每一层的每个神经元,都会将它们进行组合,来算出结果:

    而下一层神经网络的神经元,会把这一层的输出再进行组合。组合时,根据上一次预测的准确性,我们会通过back propogation给每个组合不同的weights(比重)。这里的线越粗,就表示比重越大:

    下面就让我们用最难的螺旋形数据,来试试这个神经网络的表现吧!
     
    在神经网络出现前,我们往往会竭尽所能地想出尽可能好的特征,把它们全都喂给系统。而系统会是个十分浅的系统,往往只有一层。用这样的方法来完成分类。
     
    让我们先来实验传统的方法。在这里,我们将所有能够想到的7个特征都输入系统,并选择只有1层的神经网络:

    最后的结果是这样的,可以看出我们的单层神经系统几乎完美地分离出了橙色点和蓝色点:

    接下来,让我们来体验神经网络真正的魔法。神经网络较大的魔力,就在于我们根本不需要想出各种各样的特征,用来输入给机器学习的系统。我们只需要输入最基本的特征x1, x2, 只要给予足够多层的神经网络和神经元,神经网络会自己组合出最有用的特征。
     
    在这次试验中,我们只输入x1, x2,而选择1个6层的,每层有8个神经元的神经网络:

     
    最后的结果是这样的。我们发现,通过增加神经元和神经网络的层数,即使没有输入许多特征,我们也能够成功地分类:

    神经网络的伟大之处就在于此。当我们在解决分类橙色点和蓝色点这样的简单问题时,想出额外的特征似乎并不是难事。但是,当我们要处理的问题越来越复杂,想出有用的特征就变成了最最困难的事。比如说,当我们需要识别出哪张图片是猫,哪张图片是狗时,哪些特征是真正有效的呢?
     
    而当我们有了神经网络,我们的系统自己就能学习到哪些特征是有效的、哪些是无效的,这就大大提高了我们解决复杂机器学习问题的能力,简直是太酷啦
     
    看了以上的文章,你是不是对神经网络有了更直观的认识呢?好奇的小伙伴们,欢迎去http://playground.tensorflow.org/自己试试看,真的非常好玩!
     
    作者简介
    硅谷周边,本科毕业于Carnegie Mellon University(卡耐基梅隆大学),主修电子与计算机工程和机器人。先后在苹果(Macintosh Systems, iPod)和Google(Android, Google Glass)工作。现在是Google的一名软件工程师。
     
     
    原文:http://f.dataguru.cn/article-9324-1.html
  • 相关阅读:
    获取窗口句柄,并向窗口发送自定义消息
    双向链表总结
    循环链表总结
    顺序队列总结
    链式栈总结
    顺序栈的总结
    链式队列总结
    源码网址
    通用型动态数组的总结
    单链表的链式存储总结
  • 原文地址:https://www.cnblogs.com/Ph-one/p/9064857.html
Copyright © 2011-2022 走看看