zoukankan      html  css  js  c++  java
  • DP:教授逻辑学问题

    http://www.zhihu.com/question/23999095#answer-12373156问题来自知乎

    2015-08-17

    问题描述:

    一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!
    一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的) 
    教授问第一个学生:你能猜出自己的数吗?回答:不能
    问第二个,不能
    第三个,不能
    再问第一个,不能
    第二个,不能
    第三个:我猜出来了,是144!
    教授很满意的笑了。
    请问您能猜出另外两个人的数吗?

    PS:其实这个问题可以拓展到任意数字m,任意轮k,任意同学s猜出

    分析:

    1.首先这是一道动态规划想都不用想,不过在动态规划之前,我们先想几个问题:

      a.怎么才能一定能猜出来?

      b.在猜出来之前,其他人怎么想的?

    2.好了带着这两个问题,我们先想第一个问题:a.怎么才能一定能猜出来?

      首先我们先明确,0首先不是一个正整除,那么,一定存在(m,m/2,m/2)或者(m/2,m,m/2)或者(m,m/2,m/2)的情况一定能猜得出来,你想呀其他两个人都是同一个数,你自己的数不可能是0吧,嘻嘻嘻,所以马上得出答案。

      然后其他情况呢?不用多说,这是根据上一个同学所猜的情况得出来的,那么上一个,上上一个,上上上一个......肯定猜不出来,于是我们知道只要保证本轮是

               由于上一轮的一定猜不出来的状态,而来的一定能猜出来的状态,就完事了

      那怎么表述这个东西呢?

      我们先来看开始的时候:

      首先A同学先猜,A同学看到另外俩贴着纸片的逗比,如果他们俩都是相同数字,那么恭喜A同学,他成功猜出他的数字就是另外俩同学的数之和。可是万一不是呢?那就不知道了,比如如果他看到B是2,C是3,那他究竟是1还是5呢?心疼A同学,我们让下一个同学来猜

      所以此时A同学的必猜到态是(2,1,1)(比例式,下面同理)(0,0)(第1轮第一个状态)

      轮到B同学,B同学的必猜到态也有一个(1,2,1)(0,0),那么因为可怜的A同学已经猜了一次了,那么B自己的数字一定不和C同学的重复(不然A同学早就手舞足蹈了),所以B的必猜到态还可以是(2,3,1),因为B自己的数字不可能和C重复嘛,如果看到A是C的两倍,那么恭喜B同学,他的数字一定是两个数字之和,而不是差,不然就是A同学猜出来

      好了如果B同学也猜不出来,那就轮到C同学了,和A,B同学一定,C同学自己的必猜到态也是(1,1,2),然后建立在前俩同学都猜不到的基础上,他会有哪些状态是一定能猜到数字的呢?

    如果A的数字是B的俩倍(或反着来),和上面的情况一样,C会有(1,2,3)这个必猜到态,同时也有(2,1,3)这个必猜到态,对称的拉

    然后我们注意到B之前已经不能判断(2,3,1)这个状态(也就是这个时候不可能出现这种比例),那么C一定是5(相对于A,B,2+3=5),而不可能是3-2=1(不然就被B猜到了)

      好了回头一看,我们已经处理完我们这道题的基准情况了,我们数一下,一开始A有1种必猜到态,B有2种必猜到态,C有4种必猜到态。

      接下来就是推进这些基准情况了,我们知道必猜到态一定是建立在必猜不到的状态的基础上的,根据我们上面的推导,你是不是发现了一个规律,如果一个处于K的状态,比如(2,3,?)如果(2,3,1)b不是必猜到态,那么(2,3,5)一定是必猜到态,只要把比例中的另外两个数加起来代替当前比例中的位置,就是必猜到态了,多省事!

      另外,当前这个人的猜测是根据另外两个人猜不到的基础上的,所以当前必猜到态的个数一定是之前两个人都猜不出来的状态的和!

            设a(x)是必猜到态的个数,则当前必猜到态的个数是

                a(x)=a(x-1)+a(x-2)   x>=4

                  = 1        (x=1)

                  = 2        (x=2)

                      = 4                     (x=3)

                这个东西是不是似曾相识,对的没错他就是斐波那契数.....的兄弟OWO

                  1,2,4,6,10,16,26.....

    至于代码,知道原理以后代码就很好写了,主要是要处理不同种情况要小心就好了

    #include <stdio.h>
    #include <stdlib.h>
    #define MAX 255
    
    static int Win_State[3][MAX][3];
    static int Who_Konw;
    void Initialize_(void);
    void Search(const int, int[], const int);
    void Print_Item(const int, int[]);
    void ReMark(int[], int);
    
    int main(void)
    {
        int Win_Sum[3];
    
        int m, k, i;
        printf("输入格式:(数字大小,轮数,第几个同学)
    ");
        while (1)
        {
            Win_Sum[0] = 1; Win_Sum[1] = 2; Win_Sum[2] = 4;
            Initialize_();
            fflush(stdin);
            if (~scanf("(%d,%d,%d)", &m, &k, &Who_Konw)
                && k > 0 && Who_Konw > 0 && Who_Konw <= 3)
            {
                i = (k - 1) * 3 + Who_Konw;
                Search(m, Win_Sum, i);
            }
        }
    }
    
    void Initialize_(void)
    {
        //先定义a(1),a(2),a(3)的三个基准情况
        Win_State[0][0][0] = 2; Win_State[0][0][1] = 1; Win_State[0][0][2] = 1;
        Win_State[1][0][0] = 2; Win_State[1][0][1] = 3; Win_State[1][0][2] = 1;
        Win_State[1][1][0] = 1; Win_State[1][1][1] = 2; Win_State[1][1][2] = 1;
        Win_State[2][0][0] = 1; Win_State[2][0][1] = 1; Win_State[2][0][2] = 2;
        Win_State[2][1][0] = 2; Win_State[2][1][1] = 1; Win_State[2][1][2] = 3;
        Win_State[2][2][0] = 1; Win_State[2][2][1] = 2; Win_State[2][2][2] = 3;
        Win_State[2][3][0] = 2; Win_State[2][3][1] = 3; Win_State[2][3][2] = 5;
    }
    
    void Search(const int m, int Win_Sum[], const int Goal_Position)
    {
        if (Goal_Position == 1 || Goal_Position == 2 || Goal_Position == 3)
            Print_Item(m, Win_Sum);
        else
        {
            int i, self;
            for (i = 4; i <= Goal_Position; i++)
            {
                self = (i - 1) % 3;
                ReMark(Win_Sum, self);
            }
            Print_Item(m, Win_Sum);
        }
    }
    
    void ReMark(int Win_Sum[], int self)
    {
        int j, k, p = self;
        Win_Sum[self] = Win_Sum[(p + 1) % 3] + Win_Sum[(p + 2) % 3];
        for (j = 0; j < Win_Sum[self];)
        {
            for (k = 0; k < Win_Sum[(p + 1) % 3]; k++, j++)
            {
                Win_State[self][j][self] = Win_State[(p + 1) % 3][k][(p + 1) % 3] + Win_State[(p + 1) % 3][k][(p + 2) % 3];
                Win_State[self][j][(p + 1) % 3] = Win_State[(p + 1) % 3][k][(p + 1) % 3];
                Win_State[self][j][(p + 2) % 3] = Win_State[(p + 1) % 3][k][(p + 2) % 3];
            }
            for (k = 0; k < Win_Sum[(p + 2) % 3]; k++, j++)
            {
                Win_State[self][j][self] = Win_State[(p + 2) % 3][k][(p + 1) % 3] + Win_State[(p + 2) % 3][k][(p + 2) % 3];
                Win_State[self][j][(p + 1) % 3] = Win_State[(p + 2) % 3][k][(p + 1) % 3];
                Win_State[self][j][(p + 2) % 3] = Win_State[(p + 2) % 3][k][(p + 2) % 3];
            }
        }
    }
    
    void Print_Item(const int m, int Win_Sum[])
    {
        int i, sum = 0, p = Who_Konw - 1;
        for (i = 0; i < Win_Sum[Who_Konw - 1]; i++)
        {
            if (m % Win_State[Who_Konw - 1][i][Who_Konw - 1] == 0)
            {
                printf("%d:(144,",++sum);
                printf("%d,", m*Win_State[Who_Konw - 1][i][(p + 1) % 3] / Win_State[Who_Konw - 1][i][Who_Konw - 1]);
                printf("%d)
    ", m*Win_State[Who_Konw - 1][i][(p + 2) % 3] / Win_State[Who_Konw - 1][i][Who_Konw - 1]);
            }
        }
    }

      好了代码就是上面,写的其实是有点怪怪的感觉,主要是我用的是数组代表了不同人,这样我只用写一次代码就可以了!而不用多次A,B,C之类的,太烦,所以就产生了三维数组噜

  • 相关阅读:
    linux查看python安装位置
    Linux 重命名
    Linux 解压 压缩文件
    linux下文件的复制、移动与删除
    设计模式-命令模式
    设计模式-心得
    设计模式-责任链模式
    ajax跨域问题以及解决方案
    强者运强
    管理者法则
  • 原文地址:https://www.cnblogs.com/Philip-Tell-Truth/p/4736987.html
Copyright © 2011-2022 走看看