The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
Solution:
计算 1~n 数字的第k个排列
思路1:从小到大生成同时计数,直到第k个。 肯定超时试都不用试。。
思路2:直接根据规律计算第k个排列。
分析:1~n个数共有n!个排列,1开头的有(n-1)!个,2开头的(n-1)!个,...n开头的有(n-1)!个。因此用k/(n-1)!就确定了第一位数字,然后依次类推(用过的数字要去除),继续在(n-1)!个数中找第k%(n-1)!个数。
1 public class Solution { 2 public String getPermutation(int n, int k) { 3 String s_n = generateString(n); 4 int total = factorial(n); 5 if(n==1 && k==1) 6 return "1"; 7 8 char[] result = new char[n]; 9 10 for (int i = 0; i < n; ++i) { 11 total /= (n - i); 12 int index = (k - 1) / total; 13 result[i] = s_n.charAt(index); 14 15 s_n=s_n.replace(result[i]+"", ""); 16 k-=index*total; 17 } 18 19 return new String(result); 20 } 21 22 private String generateString(int n) { 23 // TODO Auto-generated method stub 24 String sb = ""; 25 for (int i = 1; i <= n; ++i) { 26 sb += i + ""; 27 } 28 return sb; 29 } 30 31 private int factorial(int n) { 32 // TODO Auto-generated method stub 33 int total = 1; 34 for (int i = 1; i <= n; i++) 35 total *= i; 36 return total; 37 } 38 }