Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
Solution:dp
1 public class Solution { 2 public int uniquePathsWithObstacles(int[][] obstacleGrid) { 3 int M=obstacleGrid.length; 4 int N=obstacleGrid[0].length; 5 int[][] dp=new int[M][N]; 6 7 for(int i=0;i<M;++i){ 8 if(obstacleGrid[i][0]==1){ 9 dp[i][0]=0; 10 break; 11 }else{ 12 dp[i][0]=1; 13 } 14 15 } 16 for(int i=0;i<N;++i){ 17 if(obstacleGrid[0][i]==1){ 18 dp[0][i]=0; 19 break; 20 }else{ 21 dp[0][i]=1; 22 } 23 } 24 25 for(int i=1;i<M;++i){ 26 for(int j=1;j<N;++j){ 27 if(obstacleGrid[i][j]==1){ 28 dp[i][j]=0; 29 }else{ 30 dp[i][j]=dp[i-1][j]+dp[i][j-1]; 31 } 32 } 33 } 34 35 return dp[M-1][N-1]; 36 } 37 }
以下为大神的代码:https://github.com/mengli/leetcode/blob/master/UniquePathsII.java
1 public class UniquePathsII { 2 public int uniquePathsWithObstacles(int[][] obstacleGrid) { 3 int m = obstacleGrid.length; 4 if (m == 0) 5 return 0; 6 int n = obstacleGrid[0].length; 7 int[][] map = new int[m][n]; 8 map[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1; 9 for (int i = 1; i < m; i++) { 10 map[i][0] = obstacleGrid[i][0] == 1 ? 0 : map[i - 1][0]; 11 } 12 for (int j = 1; j < n; j++) { 13 map[0][j] = obstacleGrid[0][j] == 1 ? 0 : map[0][j - 1]; 14 } 15 for (int i = 1; i < m; i++) { 16 for (int j = 1; j < n; j++) { 17 map[i][j] = obstacleGrid[i][j] == 1 ? 0 : map[i - 1][j] 18 + map[i][j - 1]; 19 } 20 } 21 return map[m - 1][n - 1]; 22 } 23 }