zoukankan      html  css  js  c++  java
  • 洛谷 P4559: bzoj 5319: [JSOI2018]军训列队

    题目传送门:洛谷 P4559

    题意简述:

    (n) 个学生,编号为 (i) 的学生有一个位置 (a_i)

    (m) 个询问,每次询问编号在 ([l,r]) 区间内的学生跑到区间 ([k,k+r-l]) 中的位置花费的距离总和的最小值。

    每个学生的初始位置互不相同,最终到达的位置也必须互不相同。

    题解:

    不难证明,学生跑到最终的位置时,他们的相对位置不改变至少是最优解之一,这可以脑补一下。

    所以我们只需要求最终相对位置不变时的答案即可。

    因为学生两两位置不同,所以最终有一部分学生向右跑,有一部分学生向左跑。

    向右跑的学生对答案的贡献是 (k+rk_i-1-a_i)(rk_i) 表示他的位置在这个编号区间中的学生是第 (rk_i) 小的。

    向左跑的学生对答案的贡献是 (a_i-k-rk_i+1)

    显然左边一部分学生向右跑,右边一部分学生向左跑。

    考虑使用主席树处理这个问题。

    对权值线段树进行可持久化,则编号区间内的学生就是两个线段树相减。

    考虑递归进一个区间 ([l,r]),有 (4) 种情况。

    1. 这个区间中没有学生。直接返回 (0)

    2. 这个区间中的学生全部往右跑。返回 ((sum k+rk_i-1)-(sum a_i)),左边是等差数列求和的形式,右边可以直接记。

    3. 这个区间中的学生全部往左跑。返回 ((sum a_i)-(sum k+rk_i-1))

    4. 不能确定这个区间中的学生的方向,递归到子树处理。

    直接在主席树上实现即可。

    时间复杂度 (O(nlog n+mlog n imes ext{wys})),因为我不会分析递归的复杂度,可能是 (O(mlog n)) 的。

  • 相关阅读:
    this和$(this)的关系
    单色边表格
    php概率算法
    jQuery Ajax 参数解析
    拍拍CPS入门使用
    飞鸽端口被占
    浏览器调试工具技巧分享
    事件click,bind,click
    jQuery旋转插件—rotate
    利用谷歌API生成二维码
  • 原文地址:https://www.cnblogs.com/PinkRabbit/p/10256814.html
Copyright © 2011-2022 走看看