zoukankan      html  css  js  c++  java
  • 洛谷 P4389: 付公主的背包

    题目传送门:洛谷 P4389

    题意简述:

    (n) 个物品,每个物品都有无限多,第 (i) 个物品的体积为 (v_i)(v_ile m))。

    问用这些物品恰好装满容量为 (i) 的背包的方案数,两个方案不同当且仅当存在某一个物品的选取数量不同。

    你需要对 (iin [1,m]) 回答,答案对 (998,244,353) 取模。

    题解:

    对于一个体积为 (v) 的物品,它装满容量为 (x) 的背包的方案数序列为 (a_x=[v|x])

    例如 (v=3) 时有序列(从 (0) 开始):({1,0,0,1,0,0,1,0,0,1,0,cdots})

    它的普通生成函数为 (displaystylefrac{1}{1-x^v})

    记答案的普通生成函数为 (F(x)),则有 (displaystyle F(x)=prod_{i=1}^{n}frac{1}{1-x^{v_i}})

    两边取对数:(displaystyleln F(x)=sum_{i=1}^{n}lnfrac{1}{1-x^{v_i}})

    有一个式子:(displaystylelnfrac{1}{1-x^k}=sum_{i=1}^{infty}frac{1}{i}x^{ik})

    这个式子的证明:

    (displaystyle F(x)=frac{1}{1-x^k}),设 (G(x)=ln F(x))

    [egin{aligned}G(x)&=ln F(x)\&=int(frac{mathrm{d}}{mathrm{d}x}ln F)(x)mathrm{d}x\&=int(frac{F'(x)}{F(x)})mathrm{d}x\&=int((1-x^k)F'(x))mathrm{d}x\&=int((1-x^k)sum_{i=1}^{infty}kcdot icdot x^{ki-1})mathrm{d}x\&=int(sum_{i=1}^{infty}kcdot icdot x^{ki-1}-sum_{i=1}^{infty}kcdot icdot x^{ki-1}cdot x^k)mathrm{d}x\&=int(sum_{i=1}^{infty}kcdot icdot x^{ki-1}-sum_{i=1}^{infty}kcdot (i-1)cdot x^{ki-1})mathrm{d}x\&=int(sum_{i=1}^{infty}kcdot x^{ki-1})mathrm{d}x\&=sum_{i=1}^{infty}frac{1}{i}x^{ki}end{aligned} ]

    建议背一些常用式子。

    那么就显而易见了:

    [egin{aligned}ln F(x)&=sum_{i=1}^{n}sum_{j=1}^{infty}frac{1}{j}x^{v_{i}j}\&=sum_{k=1}^{m}sum_{j=1}^{infty}frac{displaystylesum_{i=1}^{n}[v_i=k]}{i}x^{kj}end{aligned} ]

    (b_k) 为体积为 (k) 的物品数量,并且我们只需要次数小于等于 (m) 的项,有 (displaystyleln F(x)equivsum_{k=1}^{m}sum_{j=1}^{lfloorfrac{m}{k} floor}frac{b_k}{i}x^{kj}pmod{x^{m+1}})

    右边可以在 (displaystylesum_{i=1}^{m}frac{m}{i}=O(mln m)) 的时间内得到,左边使用多项式 (mathrm{Exp})(O(mlog m)) 的时间内得到,总时间复杂度 (O(mlog m))

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    typedef long long LL;
    const int Mod = 998244353;
    const int G = 3, iG = 332748118;
    const int MS = 1 << 19 | 7;
    
    inline LL qPow(LL b, int e) {
    	LL a = 1;
    	for (; e; e >>= 1, b = b * b % Mod)
    		if (e & 1) a = a * b % Mod;
    	return a;
    }
    
    LL Inv[MS];
    
    inline void Init(int N) {
    	Inv[1] = 1;
    	for (int i = 2; i < N; ++i) Inv[i] = -(Mod / i) * Inv[Mod % i] % Mod;
    }
    
    int Sz, R[MS]; LL InvSz;
    
    inline void InitFNTT(int N) {
    	int Bt = 0;
    	for (; 1 << Bt < N; ++Bt) ;
    	if (Sz == (1 << Bt)) return ;
    	Sz = 1 << Bt; InvSz = -(Mod - 1) / Sz;
    	for (int i = 1; i < Sz; ++i) R[i] = R[i >> 1] >> 1 | (i & 1) << (Bt - 1);
    }
    
    inline void FNTT(LL *A, int Ty) {
    	for (int i = 0; i < Sz; ++i) if (R[i] < i) std::swap(A[R[i]], A[i]);
    	for (int j = 1, j2 = 2; j < Sz; j <<= 1, j2 <<= 1) {
    		LL gn = qPow(~Ty ? G : iG, (Mod - 1) / j2), g, X, Y;
    		for (int i = 0, k; i < Sz; i += j2) {
    			for (k = 0, g = 1; k < j; ++k, g = g * gn % Mod) {
    				X = A[i + k], Y = g * A[i + j + k] % Mod;
    				A[i + k] = (X + Y) % Mod, A[i + j + k] = (X - Y) % Mod;
    			}
    		}
    	}
    	if (!~Ty) for (int i = 0; i < Sz; ++i) A[i] = A[i] * InvSz % Mod;
    }
    
    inline void PolyInv(LL *A, int N, LL *B) {
    	static LL tA[MS], tB[MS];
    	B[0] = qPow(A[0], Mod - 2);
    	for (int L = 1; L < N; L <<= 1) {
    		int L2 = L << 1, L4 = L << 2;
    		InitFNTT(L4);
    		memcpy(tA, A, 8 * L2);
    		memset(tA + L2, 0, 8 * (Sz - L2));
    		memcpy(tB, B, 8 * L);
    		memset(tB + L, 0, 8 * (Sz - L));
    		FNTT(tA, 1), FNTT(tB, 1);
    		for (int i = 0; i < Sz; ++i) tB[i] = (2 - tB[i] * tA[i]) % Mod * tB[i] % Mod;
    		FNTT(tB, -1);
    		for (int i = 0; i < L2; ++i) B[i] = tB[i];
    	}
    }
    
    inline void PolyLn(LL *A, int N, LL *B) {
    	static LL tA[MS], tB[MS];
    	PolyInv(A, N - 1, tB);
    	InitFNTT(N * 2 - 3);
    	for (int i = 1; i < N; ++i) tA[i - 1] = i * A[i] % Mod;
    	memset(tA + N - 1, 0, 8 * (Sz - N + 1));
    	memset(tB + N - 1, 0, 8 * (Sz - N + 1));
    	FNTT(tA, 1), FNTT(tB, 1);
    	for (int i = 0; i < Sz; ++i) tA[i] = tA[i] * tB[i] % Mod;
    	FNTT(tA, -1);
    	B[0] = 0;
    	for (int i = 1; i < N; ++i) B[i] = tA[i - 1] * Inv[i] % Mod;
    }
    
    inline void PolyExp(LL *A, int N, LL *B) {
    	static LL tA[MS], tB[MS];
    	B[0] = 1;
    	for (int L = 1; L < N; L <<= 1) {
    		int L2 = L << 1, L4 = L << 2;
    		memset(B + L, 0, 8 * (L2 - L));
    		PolyLn(B, L2, tB);
    		InitFNTT(L4);
    		memcpy(tA, B, 8 * L);
    		memset(tA + L, 0, 8 * (Sz - L));
    		for (int i = 0; i < L2; ++i) tB[i] = ((!i) - tB[i] + A[i]) % Mod;
    		memset(tB + L2, 0, 8 * (Sz - L2));
    		FNTT(tA, 1), FNTT(tB, 1);
    		for (int i = 0; i < Sz; ++i) tA[i] = tA[i] * tB[i] % Mod;
    		FNTT(tA, -1);
    		for (int i = 0; i < L2; ++i) B[i] = tA[i];
    	}
    }
    
    int N, M;
    int buk[MS];
    LL A[MS], B[MS];
    
    int main() {
    	scanf("%d%d", &N, &M);
    	Init(MS);
    	for (int i = 1, v; i <= N; ++i) scanf("%d", &v), ++buk[v];
    	for (int i = 1; i <= M; ++i) if (buk[i]) {
    		for (int j = 1; j <= M / i; ++j) {
    			A[i * j] = (A[i * j] + buk[i] * Inv[j]) % Mod;
    		}
    	}
    	PolyExp(A, M + 1, B);
    	for (int i = 1; i <= M; ++i) printf("%lld
    ", (B[i] + Mod) % Mod);
    	return 0;
    }
    
  • 相关阅读:
    mysql 数据操作 单表查询 group by 注意
    mysql 数据操作 单表查询 group by 聚合函数
    mysql 数据操作 单表查询 group by 聚合函数 没有group by情况下
    mysql 数据操作 单表查询 group by 介绍
    【洛谷P3586】LOG
    【YbtOJ#20078】路径之和
    【ABC181】F
    【洛谷P7045】金牌
    【AT2165】Median Pyramid Hard
    【洛谷P3708】koishi的数学题
  • 原文地址:https://www.cnblogs.com/PinkRabbit/p/10423084.html
Copyright © 2011-2022 走看看