建图思路很明确,拆点跑最大匹配,但这明显是个二分图的题题解居然只有一篇匈牙利算法。
发一种和之前那篇匈牙利思路略有不同的题解。
本题的难点就是如何输出,那么我们不妨在建图的时候加入一个原则,即:连边时位于左图的顶点编号小于位于右图的。
也就是说,形如左图的边是允许的,而形如右图的边是不允许的。
这很好理解吧~
在输出的时候,只要不停往上找即可。
上代码
#include<stdio.h>
int n,m,e[200][200],vis[200],mt[200],p[200];
int dfs(int p,int t){
int i;
for(i=p;i<=n;i++){//从p开始找右半边匹配
if(e[p][i]&&vis[i]!=t){
vis[i]=t;
if(!mt[i]||dfs(mt[i],t))return mt[i]=p;
}
}
return 0;
}
int maxflow(){
int i,ans=0;
for(i=1;i<=n;i++)if(dfs(i,i))ans++;
return ans;
}
int main(){
int i,a,b,x;
scanf("%d%d",&n,&m);
for(i=0;i<m;i++){
scanf("%d%d",&a,&b);
if(a>b){int t=a;a=b;b=t;}//保证a<b
e[a][b]=1;
}
int ans=maxflow();
for(i=n;i;i--)if(!p[i]){
x=i;
do{
printf("%d ",x);
x=mt[x];p[x]=1;//p[i]表示已输出
}while(x);
printf("
");
}
printf("%d",n-ans);
return 0;
}