zoukankan      html  css  js  c++  java
  • codeforces CF983E NN country 树上倍增

    博客迁移计划1

    \(\rightarrow\)戳我进CF原题


    E. NN country



    time limit per test: 3 seconds
    memory limit per test: 256 megabytes
    inputstandard: input
    outputstandard: output


    In the NN country, there are $ n $ cities, numbered from $ 1 $ to $ n $ ,ans $ n-1 $ roads, connecting them.
    There is a roads path between any two cities.
     
    There are $ m $ bidirectional bus routes between cities.
    Buses drive between two cities taking the shortest path with stops in every city they drive through.
    Travelling by bus, you can travel from any stop on the route to any other.
    You can travel between cities only by bus.
     
    You are interested in $ q $ questions:
    is it possible to get from one city to another and what is the minimum number of buses you need to use for it?


    Input


    The first line contains a single integer $ n (2 \le n \le 2⋅10^5) $ — the number of cities.
     
    The second line contains $ n-1 $ integers $ p_2,p_3,\dots p_n (1 \le p_i \le i ) $ ,
    where $ p_i $ means that cities $ p_i $ and $ i $ are connected by road.
     
    The third line contains a single integer $ m(1 \le m \le 2⋅10^5) $ — the number of bus routes.
     
    Each of the next $ m $ lines contains $ 2 $ integers $ a $ and $ b (1\le a,b \le n, \quad a \not= b ) $,
    meaning that there is a bus route between cities $ a $and $ b $ .
    It is possible that there is more than one route between two cities.
     
    The next line contains a single integer $ q(1 \le q \le 2⋅10^5) $ — the number of questions you are interested in.
     
    Each of the next $ q $ lines contains $ 2 $ integers $ v $ and $ u (1 \le v,u \le n,\quad v \not= u ) $,
    meaning that you are interested if it is possible to get from city $ v $ to city $ v $ and
    what is the minimum number of buses you need to use for it.


    Output


    Print the answer for each question on a separate line.
    If there is no way to get from one city to another, print $ -1 $ .
    Otherwise print the minimum number of buses you have to use.


    Examples


    input1

     7
     1 1 1 4 5 6
     4
     4 2
     5 4
     1 3
     6 7
     6
     4 5
     3 5
     7 2
     4 5
     3 2
     5 3
    

    output1

     1
     3
     -1
     1
     2
     3
    

    input2

     7
     1 1 2 3 4 1
     4
     4 7
     3 5
     7 6
     7 6
     6
     4 6
     3 1
     3 2
     2 7
     6 3
     5 3
    

    output2

     1
     -1
     -1
     1
     -1
     1
    

    Note

    CF983E



    题目大意


    • 给定一棵树和若干条路线,每条路线相当于$ x,y $ 之间的路径,途径路径上的每个点

    • 给出若干个询问,每次询问从 $ u $ 到 $ v $ 至少需要利用几条路线

    • $ N,M,Q \le 200000 $



    题解


    • 倍增对问题进行转化

    • 对于每个点,求出只用一条路线向上能够到达的最高点 $ lowest[x] $

    • 对 $ lowest $ 构造倍增数组

    • 对于询问 $ (u,v) $ ,倍增到 $ u‘ , v’ $ 后,只需要检查 $ u‘ $ 到 $ v’ $ 是否有跨越 $ lca(u,v) $ 的直达路线

     

    • 计算两点是否有直达路线

    • 树状数组维护\(DFS\)

    • \(DFS\)遍历整棵树,递归进入 \(x\) 时,扫描路线$ (x,y) $,把 $ y $ 在 \(DFS\) 序上的对应位置 \(+1\)

    • $ x,y $ 可直达,当且仅当 $ x $ 子树中的节点使 \(DFS\) 序上 $ y $ 对应的区间的和发生了变化


    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    #define maxn 200010
    #define pb(x) push_back(x)
    #define PP pair<int,int>
    #define mp(a,b) make_pair(a,b)
    #define fi first
    #define se second
    #define debug cout<<1<<endl;
    int n,m,Q,ans[maxn];
    inline int read() {
        register char ch;
        while(!isdigit(ch=getchar()));
        register int x=ch^'0';
        while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
        return x;
    }
    namespace BIT{
    	int c[maxn];
    	inline void add(int x,int val){
    		for(;x<=n;x+=x&-x) c[x]+=val;
    	}
    	inline int qry(int x){
    		int res=0;
    		for(;x;x-=x&-x) res+=c[x];
    		return res;
    	}
    }
    namespace Union{
    	int f[maxn];
    	inline void init(int n){
    		for(int i=1;i<=n;++i) f[i]=i;
    	}
    	int find(int x){ 
    		return x==f[x] ? x : f[x]=find(f[x]);
    	}
    	inline void merge(int u,int v){
    		f[u]=v;
    	}
    }
    struct edge{ int v,nxt; }e[maxn<<1];
    int heade[maxn],tote=1;
    void adde(int u,int v){
    	e[++tote].v=v; e[tote].nxt=heade[u]; heade[u]=tote;
    }
    struct buss{ int v,nxt; }b[maxn<<1];
    int headb[maxn],totb=1,LCA_b[maxn<<1];
    void addb(int u,int v){
    	b[++totb].v=v; b[totb].nxt=headb[u]; headb[u]=totb;
    }
    struct querys{ int u,v,nxt; }q[maxn<<1];
    int headq[maxn],totq=1,LCA_q[maxn<<1];
    void addq(int u,int v){
    	q[++totq].v=v; q[totq].u=u; q[totq].nxt=headq[u]; headq[u]=totq;
    }
    struct Querys{ int v,nxt; }Qs[maxn<<1];
    int headQ[maxn],totQ=1,LCA_Q[maxn<<1];
    void addQ(int u,int v){
    	Qs[++totQ].v=v; Qs[totQ].nxt=headQ[u]; headQ[u]=totQ;
    }
    PP dfslen[maxn];
    bool vis[maxn];
    int dep[maxn],dfn;
    void dfs(int u,int pre){
    	vis[u]=1;
    	dfslen[u].fi=++dfn;
    	for(int i=heade[u];i;i=e[i].nxt)
    		if(!vis[e[i].v]){
    			int v=e[i].v;
    			dep[v]=dep[u]+1;
    			dfs(v,u);
    			Union::merge(v,u);
    		}
    	dfslen[u].se=dfn;
    	for(int i=headb[u];i;i=b[i].nxt)
    		if(vis[b[i].v]) LCA_b[i]=LCA_b[i^1]=Union::find(b[i].v);
    	for(int i=headq[u];i;i=q[i].nxt)
    		if(vis[q[i].v]) LCA_q[i]=LCA_q[i^1]=Union::find(q[i].v);
    }
    int lowest[maxn][21];
    void getlowest(int u){
    	vis[u]=1; lowest[u][0]=u;
    	for(int i=headb[u];i;i=b[i].nxt)
    		if(dep[LCA_b[i]]<dep[lowest[u][0]] || lowest[u][0]==0) 
    			lowest[u][0]=LCA_b[i];
    	
    	for(int i=heade[u];i;i=e[i].nxt)
    		if(!vis[e[i].v]){
    			int v=e[i].v;
    			getlowest(v);
    			if(dep[lowest[v][0]]<dep[lowest[u][0]]) 
    				lowest[u][0]=lowest[v][0];
    		}
    }
    void dfs2(int u){
    	vis[u]=1; vector<PP>Qtmp;
    	for(int i=headQ[u];i;i=Qs[i].nxt){
    		int v=Qs[i].v;
    		if(dfslen[v].fi>dfslen[u].fi && ans[i>>1]!=-1)
    			Qtmp.pb(mp(i,BIT::qry(dfslen[v].se)-BIT::qry(dfslen[v].fi-1)));
    	}
    	for(int i=heade[u];i;i=e[i].nxt)
    		if(!vis[e[i].v]) dfs2(e[i].v);
    		
    	for(int i=headb[u];i;i=b[i].nxt){
    		BIT::add(dfslen[b[i].v].fi,1);
    		BIT::add(dfslen[u     ].fi,1);
    	}
    	for(int i=0;i<Qtmp.size();++i){
    		int tmp=BIT::qry(dfslen[Qs[Qtmp[i].fi].v].se)-BIT::qry(dfslen[Qs[Qtmp[i].fi].v].fi-1);
    		ans[Qtmp[i].fi>>1]+=(Qtmp[i].se!=tmp ? 1 : 2);
    	}
    }
    int main(){
    	n=read();
    	for(int i=2;i<=n;++i){
    		int v; v=read();
    		adde(i,v); adde(v,i);
    	}
    	scanf("%d",&m);
    	for(int i=1;i<=m;++i){
    		int u,v; u=read(); v=read();
    		addb(u,v); addb(v,u);
    	}
    	scanf("%d",&Q);
    	for(int i=1;i<=Q;++i){
    		int u,v; u=read(); v=read();
    		addq(u,v); addq(v,u);
    	}
    	Union::init(n); 
    	dfs(1,0); 
    	memset(vis,0,sizeof(bool)*(n+1));
    	getlowest(1);
    	for(int i=1;i<=n;++i)
    	for(int j=1;j<=20;++j)
    		lowest[i][j]=lowest[lowest[i][j-1]][j-1];
    	for(int i=2;i<=totq;i+=2){
    		int u=q[i].u,v=q[i].v;
    		int tmp=0; 
    		for(int j=20;~j;--j)
    			if(dep[lowest[u][j]]>dep[LCA_q[i]]){
    				u=lowest[u][j];
    				tmp+=(1<<j);
    			}
    		for(int j=20;~j;--j)
    			if(dep[lowest[v][j]]>dep[LCA_q[i]]){
    				v=lowest[v][j];
    				tmp+=(1<<j);
    			}
    		addQ(u,v); LCA_Q[totQ]=LCA_q[i];
    		addQ(v,u); LCA_Q[totQ]=LCA_q[i];
    		if(dep[lowest[u][0]]<=dep[LCA_Q[i]] && dep[lowest[v][0]]<=dep[LCA_Q[i]]) 
    			 ans[i>>1]=tmp;
    		else ans[i>>1]=-1;
    	}
    	memset(vis,0,sizeof(bool)*(n+1));
    	dfs2(1);
    	for(int i=1;i<=Q;++i) printf("%d\n",ans[i]);
    	return 0;
    }
    
  • 相关阅读:
    使用BindingSource组件 将Windows Form控件绑定到通过调用XML Web服务获得的结果
    使用BindingSource组件将Windows Forms控件绑定到类型
    如何:用BindingSource将Windows Forms控件绑定到工厂对象
    如何:使用 Windows 窗体 BindingSource 组件对 ADO.NET 数据进行排序和筛选
    BindingSource
    DataSet
    C#里面如何判断一个Object是否是某种类型
    VS中提示:未能启用约束。一行或多行中包含违反非空、唯一或外键约束的值
    TableAdapter、Dataset与BindingSource的关系
    BASE64和图片之间的互相转换
  • 原文地址:https://www.cnblogs.com/Potrem/p/CF983E.html
Copyright © 2011-2022 走看看