zoukankan      html  css  js  c++  java
  • codeforces CF487E Tourists 边双连通分量 树链剖分

    $ ightarrow $ 戳我进CF原题

    E. Tourists


    time limit per test: 2 seconds
    memory limit per test: 256 megabytes
    input: standard input
    output: standard output

     
    There are $ n $ cities in Cyberland, numbered from $ 1 $ to $ n $ , connected by m bidirectional roads.
    The $ j $ -th road connects city $ a_j $ and $ b_j $ .
     
    For tourists, souvenirs are sold in every city of Cyberland. In particular, city $ i $ sell it at a price of $ w_i $ .
     
    Now there are $ q $ queries for you to handle. There are two types of queries:
     

    • " C $ a w $ ": The price in city $ a $ is changed to $ w $.

    • " A $ a b $ ": Now a tourist will travel from city $ a $ to $ b $ .
      He will choose a route, he also doesn't want to visit a city twice.
      He will buy souvenirs at the city where the souvenirs are the cheapest (possibly exactly at city $ a $ or $ b $ ).
      You should output the minimum possible price that he can buy the souvenirs during his travel.
       

    More formally, we can define routes as follow:
     

    • A route is a sequence of cities $ [x_1, x_2, ..., x_k] $ , where $ k $ is a certain positive integer.

    • For any $ 1 ≤ i < j ≤ k, xi ≠ xj $ .

    • For any $ 1 ≤ i < k $ , there is a road connecting $ x_i $ and $ x_{i + 1} $ .

    • The minimum price of the route is $ min(w_{x_1}, w_{x_2}, ..., w_{x_k}) $ .

    • The required answer is the minimum value of the minimum prices of all valid routes from $ a $ to $ b $ .
       

    Input

    The first line of input contains three integers $ n, m, q (1 ≤ n, m, q ≤ 10^5) $ , separated by a single space.
     
    Next $ n $ lines contain integers $ w_i (1 ≤ w_i ≤ 10^9) $ .
     
    Next $ m $ lines contain pairs of space-separated integers $ a_j $ and $ b_j (1 ≤ a_j, b_j ≤ n, a_j ≠ b_j) $ .
     
    It is guaranteed that there is at most one road connecting the same pair of cities.
    There is always at least one valid route between any two cities.
     
    Next $ q $ lines each describe a query. The format is " C $ a w $ " or " A $ a b $ " $ (1 ≤ a, b ≤ n, 1 ≤ w ≤ 10^9) $ .
     

    Output

    For each query of type "A", output the corresponding answer.
     

    Examples

    input1

     3 3 3
     1
     2
     3
     1 2
     2 3
     1 3
    A 2 3
    C 1 5
    A 2 3
    

    output1

     1
     2
    

    input2

     7 9 4
     1
     2
     3
     4
     5
     6
     7
     1 2
     2 5
     1 5
     2 3
     3 4
     2 4
     5 6
     6 7
     5 7
    A 2 3
    A 6 4
    A 6 7
    A 3 3
    

    output2

     2
     1
     5
     3
    

     

    Note

    For the second sample, an optimal routes are:
     
    From $ 2 $ to $ 3 $ it is $ [2, 3] $ .
     
    From $ 6 $ to $ 4 $ it is $ [6, 5, 1, 2, 4] $ .
     
    From $ 6 $ to $ 7 $ it is $ [6, 5, 7] $ .
     
    From $ 3 $ to $ 3 $ it is $ [3] $ .

    pic1

     

    题目大意

    • $ n $ 个点 $ m $ 条边的无向图,每个点的纪念品都有一个价格,执行 $ q $ 次操作,分为两类

    • 改变一个点的纪念品价格

    • 询问 $ x $ 到 $ y $ 的任意简单路径上最便宜的纪念品

    • $ n,m,q le 100000

     

    题解

    结论:一个点数大于等于3的点双连通分量中对于任意不同的三点 $ a,b,c $ ,
    必定存在一条简单路径从 $ a $ 走到 $ b $ 经过 $ c $ 。
     

    • 一个 $ v-DCC $ 中的点肯定能通过简单路径互相到达

    • 把点双连通分量缩点,形成一棵树,树上包括“割点”和“缩点后的新点”

     

    -对于每个缩成的点,用 $ set $ 维护对应 $ v-DCC $ 中除了“最高割点”之外的纪念品的最小价格

    • 换言之,割点纪念品的价格只在树上“割点”本身和它父亲对应的 $ v-DCC $ 中维护

     

    • 最后再加上动态树或树链剖分即可解决

     

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring> 
    #include<algorithm>
    #include<vector>
    #include<stack>
    #include<set>
    using namespace std;
    #define N 200005
    multiset<int>s[N];
    multiset<int>::iterator it;
    vector<int>e[N],G[N];
    stack<int>st;
    int n,m,q,dfn[N],low[N],tim,cnt,w[N],bel[N];
    bool vis[N];
    void tarjan(int u,int fa){
    	dfn[u]=low[u]=++tim; 
    	st.push(u); vis[u]=1;
    	for(int i=0;i<e[u].size();++i){
    		int v=e[u][i];
    		if(v==fa) continue;
    		if(!dfn[v]){
    			tarjan(v,u);
    			low[u]=min(low[u],low[v]);
    			if(low[v]>=dfn[u]){
    				++cnt; int tmp;
    				G[u].push_back(cnt);
    				do{
    					tmp=st.top(); st.pop();
    					G[cnt].push_back(tmp);
    					s[cnt].insert(w[tmp]);
    					bel[tmp]=cnt;
    				}while(tmp!=v);
    				w[cnt]=*(s[cnt].begin());
    			}
    		} else if(vis[v])
    			low[u]=min(low[u],dfn[v]);
    	}
    }
    int siz[N],f[N],dep[N],son[N],top[N],id[N],wt[N];
    void dfs1(int u){
    	siz[u]=1; 
    	for(int i=0;i<G[u].size();++i){
    		int v=G[u][i];
    		dep[v]=dep[u]+1; f[v]=u;
    		dfs1(v);
    		siz[u]+=siz[v];
    		if(siz[v]>siz[son[u]]) son[u]=v; 
    	}
    }
    void dfs2(int u,int topf){
    	top[u]=topf;
    	wt[id[u]=++tim]=u;
    	if(son[u]) dfs2(son[u],topf);
    	for(int i=0;i<G[u].size();++i){
    		int v=G[u][i];
    		if(v==son[u]) continue;
    		dfs2(v,v);
    	}
    }
    int sum[N<<2];
    void build(int o,int l,int r){
    	if(l==r){
    		sum[o]=w[wt[l]];
    		return;
    	}
    	int mid=l+r>>1;
    	build(o<<1,l,mid); build(o<<1|1,mid+1,r);
    	sum[o]=min(sum[o<<1],sum[o<<1|1]);
    }
    void updata(int o,int l,int r,int u,int val){
    	if(l==r){
    		sum[o]=val;
    		return;
    	}
    	int mid=l+r>>1;
    	if(u<=mid) updata(o<<1,l,mid,u,val);
    	else updata(o<<1|1,mid+1,r,u,val);
    	sum[o]=min(sum[o<<1],sum[o<<1|1]);
    }
    int check(int o,int l,int r,int u,int v){
    	if(u<=l&&r<=v){
    		return sum[o];
    	}
    	int res=1e9+7,mid=l+r>>1;
    	if(u<=mid) res=min(res,check(o<<1,l,mid,u,v));
    	if(v>mid) res=min(res,check(o<<1|1,mid+1,r,u,v));
    	return res;
    }
    void modify(int u,int val){
    	if(bel[u]){
    		it=s[bel[u]].find(w[u]);
    		s[bel[u]].erase(it);
    	}
    	w[u]=val;
    	updata(1,1,cnt,id[u],val);
    	if(bel[u]){
    		s[bel[u]].insert(w[u]);
    		w[bel[u]]=*(s[bel[u]].begin());
    		updata(1,1,cnt,id[bel[u]],w[bel[u]]);
    	}
    }
    int query(int u,int v){
    	int res=1e9+7;
    	while(top[u]!=top[v]){
    		if(dep[top[u]]<dep[top[v]]) swap(u,v);
    		res=min(res,check(1,1,cnt,id[top[u]],id[u]));
    		u=f[top[u]];
    	}
    	if(dep[u]>dep[v]) swap(u,v);
    	res=min(res,check(1,1,cnt,id[u],id[v]));
    	if(u>n&&f[u]) res=min(res,w[f[u]]);
    	return res;
    }
    int main(){
    	scanf("%d %d %d",&n,&m,&q);
    	cnt=n;
    	for(int i=1;i<=n;++i) scanf("%d",&w[i]);
    	for(int i=1;i<=m;++i){
    		int u,v;
    		scanf("%d %d",&u,&v);
    		e[u].push_back(v);
    		e[v].push_back(u);
    	}
    	tarjan(1,0);
    	dfs1(1);
    	tim=0;
    	dfs2(1,0);
    	build(1,1,cnt);
    	while(q--){
    		char opt[1]; int x,y;
    		scanf("%s %d %d",opt,&x,&y);
    		if(opt[0]=='C') modify(x,y);
    		else printf("%d
    ",query(x,y));
    	}
    	return 0;
    }
    /*
    #         42550351 
    When      2018-09-06 14:42:23
    Who       PotremZ
    Problem   E - Tourists
    Lang      GNU C++11
    Verdict   Accepted
    Time      421 ms
    Memory    41800 KB
    */
    
  • 相关阅读:
    C#中的?问号
    佛学中的108条做人道理
    SQL Server函数总结
    ASP.NET MVC与Web Forms
    常数定义和字段定义的区别
    What is the purpose of Entity Framework T4 template.
    ASP.NET Internals – IIS and the Process Model
    asp.net为什么没有多重继承(个人观点,欢迎指正,谢谢!)
    c#委托,事件及观察者模式(转自:http://www.cnblogs.com/JimmyZhang/archive/2011/12/25/903360.html)
    GC and Memory leak
  • 原文地址:https://www.cnblogs.com/PotremZ/p/9600411.html
Copyright © 2011-2022 走看看