zoukankan      html  css  js  c++  java
  • POJ3613 Cow Relays 矩阵快速幂 Floyd

    $ ightarrow $ 戳我看POJ原题

    Cow Relays

    Time Limit: 1000MS $ quad $ Memory Limit: 65536K
      ### Description

    For their physical fitness program,
    $ N (2 le N le 1,000,000) $ cows have decided to run a relay race
    using the $ T (2 le T le 100) $ cow trails throughout the pasture.
     
    Each trail connects two different intersections $ (1 le I_{1i} le 1,000; 1 le I_{2i} le 1,000) $ ,
    each of which is the termination for at least two trails.
    The cows know the $ length_i $ of each trail $ (1 le length_i le 1,000) $ ,
    the two intersections the trail connects, and they know
    that no two intersections are directly connected by two different trails.
    The trails form a structure known mathematically as a graph.
     
    To run the relay, the $ N $ cows position themselves at various intersections
    (some intersections might have more than one cow).
    They must position themselves properly so that
    they can hand off the baton cow-by-cow and end up at the proper finishing place.
     
    Write a program to help position the cows.
    Find the shortest path that connects the starting intersection $ (S) $ and
    the ending intersection $ (E) $ and traverses exactly $ N $ cow trails.
     

    Input

    • Line $ 1 $ : Four space-separated integers: $ N, T, S, $ and $ E $

    • Lines $ 2..T+1 $ : Line $ i+1 $ describes trail $ i $ with three space-separated integers: $ length_i , I_{1i} $ , and $ I_{2i} $

     

    Output

    • Line $ 1 $ : A single integer
      that is the shortest distance from intersection $ S $ to intersection $ E $ that traverses exactly $ N $ cow trails.

     

    Sample Input

     2 6 6 4
     11 4 6
     4 4 8
     8 4 9
     6 6 8
     2 6 9
     3 8 9
    

    Sample Output

     10
    

     

    Source

    USACO 2007 November Gold

     

    题目大意

    • 给定一张由 $ T (2 le T le 100 ) $ 条边构成的无向图,点的编号为 $ 1 ~ 1000 $ 之间的整数。

    • 求从起点 $ S $ 到终点 $ E $ 恰好经过 $ N (2 le N le 1000000) $ 条边(可重复经过)的最短路。

     

    题解

    • 点的标号离散化到 $ 1 ~ P $

    • 若矩阵 $ A^m $ 保存任意两点之间恰好经过 $ m $ 条边的最短路,则:

    [forall i,j in [1,P], quad (A^{r+m})[i,j]=min_{1 le k le P}((A^r)[i,k]+(A^m)[k,j]) ]

    • 上式其实等价于一个关于 $ min $ 与加法运算的广义“矩阵乘法”。

    • $ (A^N)[S,E] $ 即为本题的答案。

     

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int n,t,s,e,mp[1010],cnt;
    struct data{
    	int a[205][205];
    	data operator *(data &x){
    		data c; memset(c.a,0x3f,sizeof(c.a));
    		for(int i=1;i<=cnt;++i)
    			for(int j=1;j<=cnt;++j)
    				for(int k=1;k<=cnt;++k)
    					c.a[i][j]=min(c.a[i][j],a[i][k]+x.a[k][j]);
    		return c;
    	}
    }st,ans;
    void qpow(){
    	ans=st; --n;
    	while(n){
    		if(n&1) ans=ans*st;
    		st=st*st;
    		n>>=1;
    	}
    }
    int main(){
    	scanf("%d %d %d %d",&n,&t,&s,&e);
    	memset(st.a,0x3f,sizeof(st.a));
    	for(int w,u,v,i=1;i<=t;++i){
    		scanf("%d %d %d",&w,&u,&v);
    		if(mp[u]) u=mp[u]; else u=mp[u]=++cnt;
    		if(mp[v]) v=mp[v]; else v=mp[v]=++cnt;
    		st.a[u][v]=st.a[v][u]=w;
    	}
    	qpow();
    	printf("%d",ans.a[mp[s]][mp[e]]);
    	return 0;
    }
    /*
    Problem: 3613
    
    User: potremz
    Memory: 788K
    
    Time: 297MS
    Language: C++
    
    Result: Accepted
    */
    
  • 相关阅读:
    docker save——保存镜像到本地
    Python数据结构学习笔记(三)
    Python数据结构学习笔记(二)
    python优良代码例子(一)
    NFS挂载失败,报No route to host
    python数据结构学习笔记(一)
    Centos7一键安装jdk1.8 shell脚本
    蓝海卓越计费管理系统任意文件读取
    ubuntu设置自定义脚本开机自启动
    Navicat Premium15 注册激活数据库管理工具
  • 原文地址:https://www.cnblogs.com/PotremZ/p/POJ3613.html
Copyright © 2011-2022 走看看