zoukankan      html  css  js  c++  java
  • 搜索专题: HDU1016Prime Ring Problem

    Prime Ring Problem

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 52146    Accepted Submission(s): 23096


    Problem Description
    A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

    Note: the number of first circle should always be 1.


     

    Input
    n (0 < n < 20).
     

    Output
    The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

    You are to write a program that completes above process.

    Print a blank line after each case.
     

    Sample Input
    6 8
     

    Sample Output
    Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
     

    Source

    Asia 1996, Shanghai (Mainland China) 

    Problem : 1016 ( Prime Ring Problem )     Judge Status : Accepted
    RunId : 21243288    Language : G++    Author : hnustwanghe
    Code Render Status : Rendered By HDOJ G++ Code Render Version 0.01 Beta
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    
    using namespace std;
    const int N = 20 + 5;
    bool prime[N*3],used[N]={0};
    int a[N],n;
    void prime_factor(){
        memset(prime,0,sizeof(prime));
        prime[0] = prime[1] = 1;
        for(int i=2;i<=N*2;i++)
        if(!prime[i]){
            for(int j=i*i;j<=N;j+=i)
                prime[j] = 1;
        }
    }
    
    void DFS(int cur){
        if(cur > n){
            if(!prime[a[1]+a[n]])
            for(int i=1;i<=n;i++)
                printf("%d%c",a[i],i==n?'
    ':' ');
            return;
        }
        for(int i=2;i<=n;i++){
                if(!used[i]){
                    if(!prime[a[cur-1]+i]){
                        used[i] = true;
                        a[cur] = i;
                        DFS(cur+1);
                        used[i] = false;
                    }
                }
        }
    }
    
    int main(){
        a[1] = 1;
        prime_factor();
        int cnt = 0;
        while(scanf("%d",&n)==1){
            printf("Case %d:
    ",++cnt);
            DFS(2);
            printf("
    ");
        }
    }
    

  • 相关阅读:
    【ABAP系列】SAP ABAP OOALV 动态设置单元格可否编辑
    【HANA系列】SAP HANA使用XS和HTTP创建proxy
    【HANA系列】SAP HANA SLT在表中隐藏字段并传入HANA的方法
    【BW系列】SAP 讲讲BW/4 HANA和BW on HANA的区别
    【HANA系列】SAP HANA 2.0 SPS00 SDA(Smart Data Access)连接Hadoop
    【BW系列】SAP BW on HANA 迁移问题
    【HANA系列】SAP HANA行列转换
    【HANA系列】SAP ECLIPSE中创建ABAP项目失败原因解析
    开放-封闭原则
    单一职责原则
  • 原文地址:https://www.cnblogs.com/Pretty9/p/7347705.html
Copyright © 2011-2022 走看看