Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 52146 Accepted Submission(s): 23096
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in
lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
Source
Asia 1996, Shanghai (Mainland China)
Problem :
1016 ( Prime Ring Problem ) Judge Status : Accepted
RunId : 21243288 Language : G++ Author : hnustwanghe
Code Render Status : Rendered By HDOJ G++ Code Render Version 0.01 Beta
RunId : 21243288 Language : G++ Author : hnustwanghe
Code Render Status : Rendered By HDOJ G++ Code Render Version 0.01 Beta
#include<iostream> #include<cstring> #include<cstdio> using namespace std; const int N = 20 + 5; bool prime[N*3],used[N]={0}; int a[N],n; void prime_factor(){ memset(prime,0,sizeof(prime)); prime[0] = prime[1] = 1; for(int i=2;i<=N*2;i++) if(!prime[i]){ for(int j=i*i;j<=N;j+=i) prime[j] = 1; } } void DFS(int cur){ if(cur > n){ if(!prime[a[1]+a[n]]) for(int i=1;i<=n;i++) printf("%d%c",a[i],i==n?' ':' '); return; } for(int i=2;i<=n;i++){ if(!used[i]){ if(!prime[a[cur-1]+i]){ used[i] = true; a[cur] = i; DFS(cur+1); used[i] = false; } } } } int main(){ a[1] = 1; prime_factor(); int cnt = 0; while(scanf("%d",&n)==1){ printf("Case %d: ",++cnt); DFS(2); printf(" "); } }