zoukankan      html  css  js  c++  java
  • 最长公共子序列(LCS) Easy

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 

    Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Output

    4
    2
    0

    Sample Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Sample Output

    4
    2
    0
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    
    using namespace std;
    const int N = 1000 + 5;
    int dp[N][N];
    char str1[N], str2[N];
    int main(){
        while(scanf("%s %s", str1, str2) == 2){
            memset(dp, 0, sizeof(dp));
            int len_1 = strlen(str1), len_2 = strlen(str2);
            for(int i = 1; i <= len_1; i++)
                for(int j = 1; j <= len_2; j++){
                    if(str1[i-1] == str2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                    else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
            printf("%d
    ", dp[len_1][len_2]);
        }
    }
  • 相关阅读:
    钉钉服务器端SDK PHP版
    戒不掉
    亲历钓鱼网站
    我整理的PHP 7.0主要新特性
    JavaScript中JSON的处理心得
    X3D中Profile如何翻译
    你可以写什么?
    Gitblit中采用Ticket模式进行协作开发
    理解JavaScript中的事件处理 阻止冒泡event.stopPropagation();
    测试Remoting三种信道Http,Tcp,Ipc和Web Service的访问速度 (转)
  • 原文地址:https://www.cnblogs.com/Pretty9/p/7406886.html
Copyright © 2011-2022 走看看