Sequence operation
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7502 Accepted Submission(s): 2233
Problem Description
lxhgww got a sequence contains n characters which are all '0's or '1's.
We have five operations here:
Change operations:
0 a b change all characters into '0's in [a , b]
1 a b change all characters into '1's in [a , b]
2 a b change all '0's into '1's and change all '1's into '0's in [a, b]
Output operations:
3 a b output the number of '1's in [a, b]
4 a b output the length of the longest continuous '1' string in [a , b]
We have five operations here:
Change operations:
0 a b change all characters into '0's in [a , b]
1 a b change all characters into '1's in [a , b]
2 a b change all '0's into '1's and change all '1's into '0's in [a, b]
Output operations:
3 a b output the number of '1's in [a, b]
4 a b output the length of the longest continuous '1' string in [a , b]
Input
T(T<=10) in the first line is the case number.
Each case has two integers in the first line: n and m (1 <= n , m <= 100000).
The next line contains n characters, '0' or '1' separated by spaces.
Then m lines are the operations:
op a b: 0 <= op <= 4 , 0 <= a <= b < n.
Each case has two integers in the first line: n and m (1 <= n , m <= 100000).
The next line contains n characters, '0' or '1' separated by spaces.
Then m lines are the operations:
op a b: 0 <= op <= 4 , 0 <= a <= b < n.
Output
For each output operation , output the result.
Sample Input
1 10 10 0 0 0 1 1 0 1 0 1 1 1 0 2 3 0 5 2 2 2 4 0 4 0 3 6 2 3 7 4 2 8 1 0 5 0 5 6 3 3 9
Sample Output
5 2 6 5
/* hdu 3397 线段树双标记 给你5个操作: 0:将区间[a,b]之间的数全部置为0 1:将区间[a,b]之间的数全部置为1 2:将区间[a,b]之间的 1->0 0->1 3:求区间[a,b]之间1的个数 4:求区间[a,b]之间1的最长连续长度 先设定ls1,rs1,ms1,num1 ls0,rs0,ms0,num0分别记录1,0的情况 然后是rev和same标记,区间合并这些到是没什么问题,主要是在标记下放 最开始没有注意标记之间的互相影响的问题,假设[a,b]上即有rev又有same 我们应该怎么处理之.所以最开始WR了几次,然后想只记录same标记,当进行 rev操作时 要么更新到点,要么遇到same对标记进行修改,尝试了很久,一直 TLE 然后考虑same和rev之间的关系, 假设same在[a,b]上遇到一个rev,那么把该区间上原先有的rev删除. 如果rev在[a,b]上遇见一个same标记,那么只需要对same进行修改即可,否则 将0 1的数据进行交换 hhh-2016-04-01 21:52:19 */ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <functional> using namespace std; #define lson (i<<1) #define rson ((i<<1)|1) typedef long long ll; const int maxn = 200050; struct node { int l,r; int same,rev; int ls1,rs1,ms1; int ls0,rs0,ms0; int num1,num0; int mid() { return (l+r)>>1; } int len() { return (r-l+1); } } tree[maxn<<2]; void push_up(int i) { tree[i].ls0 = tree[lson].ls0,tree[i].ls1 = tree[lson].ls1; tree[i].rs0 = tree[rson].rs0,tree[i].rs1 = tree[rson].rs1; tree[i].num1 = tree[lson].num1 + tree[rson].num1; tree[i].num0 = tree[lson].num0 + tree[rson].num0; if(tree[i].ls1 == tree[lson].len() ) tree[i].ls1 += tree[rson].ls1; if(tree[i].ls0 == tree[lson].len() ) tree[i].ls0 += tree[rson].ls0; if(tree[i].rs1 == tree[rson].len() ) tree[i].rs1 += tree[lson].rs1; if(tree[i].rs0 == tree[rson].len() ) tree[i].rs0 += tree[lson].rs0; tree[i].ms1 = max(tree[lson].ms1,tree[rson].ms1); tree[i].ms0 = max(tree[lson].ms0,tree[rson].ms0); tree[i].ms1 = max(tree[i].ms1,tree[lson].rs1+tree[rson].ls1); tree[i].ms0 = max(tree[i].ms0,tree[lson].rs0+tree[rson].ls0); } void ini1(int i,int val) { tree[i].num1=tree[i].ls1 = tree[i].rs1 = tree[i].ms1 = val; } void ini0(int i,int val) { tree[i].num0=tree[i].ls0 = tree[i].rs0 = tree[i].ms0 = val; } void build(int i,int l,int r) { tree[i].l = l,tree[i].r = r; ini1(i,0),ini0(i,0); tree[i].same = -1; tree[i].rev = 0; if(l == r) { int x; scanf("%d",&x); if(x) ini1(i,1); else ini0(i,1); return ; } int mid = tree[i].mid(); build(lson,l,mid); build(rson,mid+1,r); push_up(i); } void exchange(int i) { swap(tree[i].ls1,tree[i].ls0); swap(tree[i].rs1,tree[i].rs0); swap(tree[i].ms0,tree[i].ms1); swap(tree[i].num0,tree[i].num1); } void solve(int i) { tree[i].same ^= 1; if(tree[i].same) { ini1(i,tree[i].len()); ini0(i,0); } else { ini1(i,0); ini0(i,tree[i].len()); } } void push_down(int i) { if(tree[i].same != -1) { tree[lson].rev = tree[rson].rev = 0; tree[lson].same = tree[i].same; tree[rson].same = tree[i].same; if(tree[i].same) { ini1(lson,tree[lson].len()),ini0(lson,0); ini1(rson,tree[rson].len()),ini0(rson,0); } else { ini1(lson,0),ini1(rson,0); ini0(lson,tree[lson].len()),ini0(rson,tree[rson].len()); } tree[i].same = -1; } if(tree[i].rev) { if(tree[lson].same != -1) { solve(lson); } else { tree[lson].rev ^= 1; exchange(lson); } if(tree[rson].same != -1) { solve(rson); } else { tree[rson].rev ^= 1; exchange(rson); } tree[i].rev = 0; } } void update_same(int i,int l,int r,int va) { if(tree[i].l >= l && tree[i].r <= r ) { tree[i].rev = 0; if(va) { ini1(i,tree[i].len()),ini0(i,0); } else { ini1(i,0),ini0(i,tree[i].len()); } tree[i].same = va; return; } push_down(i); int mid = tree[i].mid(); if(l <= mid) update_same(lson,l,r,va); if(r > mid) update_same(rson,l,r,va); push_up(i); } void update_rev(int i,int l,int r) { if(tree[i].l >= l && tree[i].r <= r) { if(tree[i].same != -1) { solve(i); return ; } tree[i].rev ^= 1; exchange(i); return; } push_down(i); int mid = tree[i].mid(); if(l <= mid) update_rev(lson,l,r); if(r > mid) update_rev(rson,l,r); push_up(i); } int query1(int i,int l,int r) { if(tree[i].l >= l && tree[i].r <= r) { return tree[i].ms1; } int mid = tree[i].mid(); push_down(i); if(r <= mid) return query1(lson,l,r); else if(l > mid) return query1(rson,l,r); else { int ans1 = query1(lson,l,mid); int ans2 = query1(rson,mid+1,r); return max(max(ans1,ans2),min(tree[lson].rs1,mid-l+1)+min(tree[rson].ls1,r-mid)); } } int query2(int i,int l,int r) { if(l <= tree[i].l && tree[i].r <= r) { return tree[i].num1; } push_down(i); int mid = tree[i].mid(); int num = 0; if(l <= mid) num += query2(lson,l,r); if(r > mid) num += query2(rson,l,r); return num; } int op; int x,y; int T,n,m; int main() { scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); build(1,0,n-1); while(m--) { scanf("%d",&op); scanf("%d%d",&x,&y); if(op == 0) update_same(1,x,y,0); else if(op == 1) update_same(1,x,y,1); else if(op == 2) update_rev(1,x,y); else if(op == 3) printf("%d ",query2(1,x,y)); else printf("%d ",query1(1,x,y)); } } return 0; }