zoukankan      html  css  js  c++  java
  • 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula
    time limit per test
     2 seconds
    memory limit per test
     256 megabytes
    input
     standard input
    output
     standard output

    Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenpok’s formula. This formula has only three arguments: nk and m, and its value is a number of k-combinations of a set of n modulo m.

    While the whole Universe is trying to guess what the formula is useful for, we need to automate its calculation.

    Input

    Single line contains three integers nkm, separated with spaces (1 ≤ n ≤ 10180 ≤ k ≤ n2 ≤ m ≤ 1 000 000).

    Output

    Write the formula value for given arguments nkm.

    Sample test(s)
    input
    2 1 3
    
    output
    2
    input
    4 2 5
    
    output
    1

    /*
    2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
    
    求C(n,k)%m
    如果m是素数的话直接就能套lucas模板.
    对于m为合数,我们可以把它分解成素数在进行处理 m = p1*p2*p3..pk   (pk = prime[i]^t)
    然后利用扩展lucas定理可以求出  C(n,k) % pi的值,最后利用中国剩余定理
    
    涨姿势:http://www.cnblogs.com/jianglangcaijin/p/3446839.html
    题目链接:http://codeforces.com/gym/100633/problem/J
    hhh-2016-04-16 13:07:05
    */
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <functional>
    typedef long long ll;
    #define lson (i<<1)
    #define rson ((i<<1)|1)
    using namespace std;
    
    const int maxn = 1e6+10;
    ll fac[maxn];
    int w[maxn],num[maxn],tw[maxn];
    int tot;
    void get_factor(ll m)
    {
        ll mm = m;
        tot = 0;
        for(ll i = 2; i*i <= m; i++)
        {
            if(mm % i == 0)
            {
                num[tot] = 0;
                w[tot] = i;
                tw[tot] = 1;
                while(mm % i == 0)
                {
                    num[tot]++;
                    mm /= i;
                    tw[tot] *= i;
                }
                tot++;
            }
        }
        if(mm > 1)
        {
            num[tot] = 1;
            w[tot] = mm;
            tw[tot] = mm;
            tot ++;
        }
    }
    
    ll ex_gcd(ll a,ll b,ll &x,ll &y)
    {
        if(a == 0 && b == 0)
            return -1;
        if(b == 0)
        {
            x = 1,y = 0;
            return a;
        }
        ll d = ex_gcd(b,a%b,y,x);
        y -= a/b*x;
        return d;
    }
    
    ll pow_mod(ll a,ll b,ll mod)
    {
        ll ret = 1;
        while(b)
        {
            if(b&1) ret = ret*a%mod;
            a = a*a%mod;
            b >>= 1;
        }
        return ret;
    }
    
    ll revers(ll a,ll b)
    {
        ll x,y;
        ll d = ex_gcd(a,b,x,y);
        if(d == 1) return (x%b+b)%b;
        else return 0;
    }
    
    ll c1(ll n,ll p,ll pk)
    {
        if(n==0)return 1;
        ll ans=1;
        for(ll i = 2; i <= pk; i++)
            if(i % p)
                ans = ans*i%pk;
        ans=pow_mod(ans,n/pk,pk);
        for(ll k=n%pk,i=2; i<=k; i++)if(i%p)ans=ans*i%pk;
        return ans*c1(n/p,p,pk)%pk;
    }
    
    ll cal(ll n,ll m,int cur,ll mod)
    {
        ll pi = w[cur],pk = tw[cur];
        ll k = 0,ans;
        ll a,b,c;
        a=c1(n,pi,pk),b=c1(m,pi,pk),c=c1(n-m,pi,pk);
    
        for(ll i=n; i; i/=pi)k+=i/pi;
        for(ll i=m; i; i/=pi)k-=i/pi;
        for(ll i=n-m; i; i/=pi)k-=i/pi;
    
        ans = a*revers(b,pk)%pk*revers(c,pk)%pk*pow_mod(pi,k,pk)%pk;
        return ans*(mod/pk)%mod*revers(mod/pk,pk)%mod;
    }
    
    ll lucas(ll n,ll m,ll mod)
    {
        ll ans = 0;
        for(int i = 0; i < tot; i++)
        {
            ans = (ans+cal(n,m,i,mod))%mod;
        }
        return ans;
    }
    
    
    ll n,k;
    ll m;
    int main()
    {
        int T;
        while(scanf("%I64d%I64d%I64d",&n,&k,&m) != EOF)
        {
            get_factor(m);
            printf("%I64d
    ",lucas(n,k,m));
        }
        return 0;
    }
    

      



  • 相关阅读:
    BZOJ 2157: 旅游 (2017.7.21 6:30-2017.7.21 15:38 今日第一题。。)
    洛谷 P1021 邮票面值设计
    洛谷 P2912 [USACO08OCT]牧场散步Pasture Walking
    COGS 2111. [NOIP2015普及]扫雷游戏
    洛谷 P3038 [USACO11DEC]牧草种植Grass Planting
    COGS 1439. [NOIP2013]货车运输
    COGS 908. 校园网
    codevs 1422 河城荷取
    codevs 1183 泥泞的道路
    洛谷 P3390 【模板】矩阵快速幂
  • 原文地址:https://www.cnblogs.com/Przz/p/5409567.html
Copyright © 2011-2022 走看看