zoukankan      html  css  js  c++  java
  • 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula
    time limit per test
     2 seconds
    memory limit per test
     256 megabytes
    input
     standard input
    output
     standard output

    Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenpok’s formula. This formula has only three arguments: nk and m, and its value is a number of k-combinations of a set of n modulo m.

    While the whole Universe is trying to guess what the formula is useful for, we need to automate its calculation.

    Input

    Single line contains three integers nkm, separated with spaces (1 ≤ n ≤ 10180 ≤ k ≤ n2 ≤ m ≤ 1 000 000).

    Output

    Write the formula value for given arguments nkm.

    Sample test(s)
    input
    2 1 3
    
    output
    2
    input
    4 2 5
    
    output
    1

    /*
    2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
    
    求C(n,k)%m
    如果m是素数的话直接就能套lucas模板.
    对于m为合数,我们可以把它分解成素数在进行处理 m = p1*p2*p3..pk   (pk = prime[i]^t)
    然后利用扩展lucas定理可以求出  C(n,k) % pi的值,最后利用中国剩余定理
    
    涨姿势:http://www.cnblogs.com/jianglangcaijin/p/3446839.html
    题目链接:http://codeforces.com/gym/100633/problem/J
    hhh-2016-04-16 13:07:05
    */
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <functional>
    typedef long long ll;
    #define lson (i<<1)
    #define rson ((i<<1)|1)
    using namespace std;
    
    const int maxn = 1e6+10;
    ll fac[maxn];
    int w[maxn],num[maxn],tw[maxn];
    int tot;
    void get_factor(ll m)
    {
        ll mm = m;
        tot = 0;
        for(ll i = 2; i*i <= m; i++)
        {
            if(mm % i == 0)
            {
                num[tot] = 0;
                w[tot] = i;
                tw[tot] = 1;
                while(mm % i == 0)
                {
                    num[tot]++;
                    mm /= i;
                    tw[tot] *= i;
                }
                tot++;
            }
        }
        if(mm > 1)
        {
            num[tot] = 1;
            w[tot] = mm;
            tw[tot] = mm;
            tot ++;
        }
    }
    
    ll ex_gcd(ll a,ll b,ll &x,ll &y)
    {
        if(a == 0 && b == 0)
            return -1;
        if(b == 0)
        {
            x = 1,y = 0;
            return a;
        }
        ll d = ex_gcd(b,a%b,y,x);
        y -= a/b*x;
        return d;
    }
    
    ll pow_mod(ll a,ll b,ll mod)
    {
        ll ret = 1;
        while(b)
        {
            if(b&1) ret = ret*a%mod;
            a = a*a%mod;
            b >>= 1;
        }
        return ret;
    }
    
    ll revers(ll a,ll b)
    {
        ll x,y;
        ll d = ex_gcd(a,b,x,y);
        if(d == 1) return (x%b+b)%b;
        else return 0;
    }
    
    ll c1(ll n,ll p,ll pk)
    {
        if(n==0)return 1;
        ll ans=1;
        for(ll i = 2; i <= pk; i++)
            if(i % p)
                ans = ans*i%pk;
        ans=pow_mod(ans,n/pk,pk);
        for(ll k=n%pk,i=2; i<=k; i++)if(i%p)ans=ans*i%pk;
        return ans*c1(n/p,p,pk)%pk;
    }
    
    ll cal(ll n,ll m,int cur,ll mod)
    {
        ll pi = w[cur],pk = tw[cur];
        ll k = 0,ans;
        ll a,b,c;
        a=c1(n,pi,pk),b=c1(m,pi,pk),c=c1(n-m,pi,pk);
    
        for(ll i=n; i; i/=pi)k+=i/pi;
        for(ll i=m; i; i/=pi)k-=i/pi;
        for(ll i=n-m; i; i/=pi)k-=i/pi;
    
        ans = a*revers(b,pk)%pk*revers(c,pk)%pk*pow_mod(pi,k,pk)%pk;
        return ans*(mod/pk)%mod*revers(mod/pk,pk)%mod;
    }
    
    ll lucas(ll n,ll m,ll mod)
    {
        ll ans = 0;
        for(int i = 0; i < tot; i++)
        {
            ans = (ans+cal(n,m,i,mod))%mod;
        }
        return ans;
    }
    
    
    ll n,k;
    ll m;
    int main()
    {
        int T;
        while(scanf("%I64d%I64d%I64d",&n,&k,&m) != EOF)
        {
            get_factor(m);
            printf("%I64d
    ",lucas(n,k,m));
        }
        return 0;
    }
    

      



  • 相关阅读:
    C#中怎样将数组的顺序打乱随机排序
    C#中怎样获取System.Drawing.Color的所有颜色对象并存到数组中
    ZedGraph怎样实现将图形右键菜单的打印和页面设置合并为打印的二级子菜单
    C#中怎样在ToolStripMenuItem下再添加子级菜单
    Dubbo搭建HelloWorld-搭建服务提供者与服务消费者并完成远程调用(附代码下载)
    AndroidStudio下载安装教程(图文教程)
    Dubbo环境搭建-管理控制台dubbo-admin实现服务监控
    前端冷知识集锦
    console.log()显示图片以及为文字加样式
    vue数据请求显示loading图
  • 原文地址:https://www.cnblogs.com/Przz/p/5409567.html
Copyright © 2011-2022 走看看