zoukankan      html  css  js  c++  java
  • 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula
    time limit per test
     2 seconds
    memory limit per test
     256 megabytes
    input
     standard input
    output
     standard output

    Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenpok’s formula. This formula has only three arguments: nk and m, and its value is a number of k-combinations of a set of n modulo m.

    While the whole Universe is trying to guess what the formula is useful for, we need to automate its calculation.

    Input

    Single line contains three integers nkm, separated with spaces (1 ≤ n ≤ 10180 ≤ k ≤ n2 ≤ m ≤ 1 000 000).

    Output

    Write the formula value for given arguments nkm.

    Sample test(s)
    input
    2 1 3
    
    output
    2
    input
    4 2 5
    
    output
    1

    /*
    2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
    
    求C(n,k)%m
    如果m是素数的话直接就能套lucas模板.
    对于m为合数,我们可以把它分解成素数在进行处理 m = p1*p2*p3..pk   (pk = prime[i]^t)
    然后利用扩展lucas定理可以求出  C(n,k) % pi的值,最后利用中国剩余定理
    
    涨姿势:http://www.cnblogs.com/jianglangcaijin/p/3446839.html
    题目链接:http://codeforces.com/gym/100633/problem/J
    hhh-2016-04-16 13:07:05
    */
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <functional>
    typedef long long ll;
    #define lson (i<<1)
    #define rson ((i<<1)|1)
    using namespace std;
    
    const int maxn = 1e6+10;
    ll fac[maxn];
    int w[maxn],num[maxn],tw[maxn];
    int tot;
    void get_factor(ll m)
    {
        ll mm = m;
        tot = 0;
        for(ll i = 2; i*i <= m; i++)
        {
            if(mm % i == 0)
            {
                num[tot] = 0;
                w[tot] = i;
                tw[tot] = 1;
                while(mm % i == 0)
                {
                    num[tot]++;
                    mm /= i;
                    tw[tot] *= i;
                }
                tot++;
            }
        }
        if(mm > 1)
        {
            num[tot] = 1;
            w[tot] = mm;
            tw[tot] = mm;
            tot ++;
        }
    }
    
    ll ex_gcd(ll a,ll b,ll &x,ll &y)
    {
        if(a == 0 && b == 0)
            return -1;
        if(b == 0)
        {
            x = 1,y = 0;
            return a;
        }
        ll d = ex_gcd(b,a%b,y,x);
        y -= a/b*x;
        return d;
    }
    
    ll pow_mod(ll a,ll b,ll mod)
    {
        ll ret = 1;
        while(b)
        {
            if(b&1) ret = ret*a%mod;
            a = a*a%mod;
            b >>= 1;
        }
        return ret;
    }
    
    ll revers(ll a,ll b)
    {
        ll x,y;
        ll d = ex_gcd(a,b,x,y);
        if(d == 1) return (x%b+b)%b;
        else return 0;
    }
    
    ll c1(ll n,ll p,ll pk)
    {
        if(n==0)return 1;
        ll ans=1;
        for(ll i = 2; i <= pk; i++)
            if(i % p)
                ans = ans*i%pk;
        ans=pow_mod(ans,n/pk,pk);
        for(ll k=n%pk,i=2; i<=k; i++)if(i%p)ans=ans*i%pk;
        return ans*c1(n/p,p,pk)%pk;
    }
    
    ll cal(ll n,ll m,int cur,ll mod)
    {
        ll pi = w[cur],pk = tw[cur];
        ll k = 0,ans;
        ll a,b,c;
        a=c1(n,pi,pk),b=c1(m,pi,pk),c=c1(n-m,pi,pk);
    
        for(ll i=n; i; i/=pi)k+=i/pi;
        for(ll i=m; i; i/=pi)k-=i/pi;
        for(ll i=n-m; i; i/=pi)k-=i/pi;
    
        ans = a*revers(b,pk)%pk*revers(c,pk)%pk*pow_mod(pi,k,pk)%pk;
        return ans*(mod/pk)%mod*revers(mod/pk,pk)%mod;
    }
    
    ll lucas(ll n,ll m,ll mod)
    {
        ll ans = 0;
        for(int i = 0; i < tot; i++)
        {
            ans = (ans+cal(n,m,i,mod))%mod;
        }
        return ans;
    }
    
    
    ll n,k;
    ll m;
    int main()
    {
        int T;
        while(scanf("%I64d%I64d%I64d",&n,&k,&m) != EOF)
        {
            get_factor(m);
            printf("%I64d
    ",lucas(n,k,m));
        }
        return 0;
    }
    

      



  • 相关阅读:
    POJ 1753(1)
    2015.12 杭电校赛 Bitwise Equations
    codeforces B
    POJ2387 水水最短路
    CodeForces 337C SDUT秋季训练--周赛(10.31)
    HDU 1241
    POJ 3126 Prime Path
    HDU 2612
    POJ 1426 Find The Multiple
    day94 flask-session 表单验证 信号 SQLALchemy
  • 原文地址:https://www.cnblogs.com/Przz/p/5409567.html
Copyright © 2011-2022 走看看