zoukankan      html  css  js  c++  java
  • poj 3693 后缀数组 重复次数最多的连续重复子串

    Maximum repetition substring
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8669   Accepted: 2637

    Description

    The repetition number of a string is defined as the maximum number R such that the string can be partitioned into R same consecutive substrings. For example, the repetition number of "ababab" is 3 and "ababa" is 1.

    Given a string containing lowercase letters, you are to find a substring of it with maximum repetition number.

    Input

    The input consists of multiple test cases. Each test case contains exactly one line, which
    gives a non-empty string consisting of lowercase letters. The length of the string will not be greater than 100,000.

    The last test case is followed by a line containing a '#'.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by the substring of maximum repetition number. If there are multiple substrings of maximum repetition number, print the lexicographically smallest one.

    /*
    poj 3693 后缀数组 重复次数最多的连续重复子串
    
    给你一个字符串,求里面重复次数最多的字符串,卒
    ccabababc  -> ababab = 3   ababa = 1
    
    表示论文里面的思路并没看懂,主要还是参考别人写好的代码的
    首先,枚举l(用来重复的长度),判断suff[i],suff[i+l]
    如果公共前缀k%l != 0,则说明这个长度不合适,修改后再进行判断。
    于是考虑k%i,可以看成后面多了k%l个字符,但可以看成前面少了m = l-k%l
    个字符,于是成了求 l-i-m,l-m的情况,再与之前的结果取较大值即可
    然后记录最大次数cnt和符合条件的所有解a[]
    
    最后进行判断,因为要求字典序最小,所以从sa[1]开始判断,如果
    su[sa[i]]和su[sa[i]+a[j]]的公共前缀大于等于(cnt-1)*a[j]
    则说明满足
    
    hhh-2016-03-13 21:37:55
    */
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <stack>
    #include <map>
    using namespace std;
    typedef long long ll;
    typedef long double ld;
    #define lson (i<<1)
    #define rson ((i<<1)|1)
    const int maxn = 100100;
    
    int t1[maxn],t2[maxn],c[maxn];
    bool cmp(int *r,int a,int b,int l)
    {
        return r[a]==r[b] &&r[l+a] == r[l+b];
    }
    
    void get_sa(int str[],int sa[],int Rank[],int height[],int n,int m)
    {
        n++;
        int p,*x=t1,*y=t2;
        for(int i = 0; i < m; i++) c[i] = 0;
        for(int i = 0; i < n; i++) c[x[i] = str[i]]++;
        for(int i = 1; i < m; i++) c[i] += c[i-1];
        for(int i = n-1; i>=0; i--) sa[--c[x[i]]] = i;
        for(int j = 1; j <= n; j <<= 1)
        {
            p = 0;
            for(int i = n-j; i < n; i++) y[p++] = i;
            for(int i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i]-j;
            for(int i = 0; i < m; i++) c[i] = 0;
            for(int i = 0; i < n; i++) c[x[y[i]]]++ ;
            for(int i = 1; i < m; i++) c[i] += c[i-1];
            for(int i = n-1; i >= 0; i--)  sa[--c[x[y[i]]]] = y[i];
    
            swap(x,y);
            p = 1;
            x[sa[0]] = 0;
            for(int i = 1; i < n; i++)
                x[sa[i]] = cmp(y,sa[i-1],sa[i],j)? p-1:p++;
            if(p >= n) break;
            m = p;
        }
        int k = 0;
        n--;
        for(int i = 0; i <= n; i++)
            Rank[sa[i]] = i;
        for(int i = 0; i < n; i++)
        {
            if(k) k--;
            int j = sa[Rank[i]-1];
            while(str[i+k] == str[j+k]) k++;
            height[Rank[i]] = k;
        }
    }
    
    
    int mm[maxn];
    int dp[20][maxn];
    int Rank[maxn],height[maxn];
    int sa[maxn],str[maxn];
    char ts[maxn];
    
    void ini_RMQ(int n)
    {
        mm[0] = -1;
        for(int i = 1;i <= n;i++)
            mm[i] = (((i & (i-1)) == 0) ? mm[i-1]+1:mm[i-1]);
    
        for(int i =1;i <= n;i++)
            dp[0][i] = height[i];
        for(int i = 1;i <= mm[n];i++)
        {
            for(int j = 1;j+(1<<i)-1 <= n;j++)
            {
                int a = dp[i-1][j];
                int b = dp[i-1][j+(1<<(i-1))];
                dp[i][j] = min(a,b);
            }
        }
    }
    
    int askRMQ(int a,int b)
    {
        if(a > b) swap(a,b);
        a++;
        int t = mm[b-a+1];
        b -= (1<<t)-1;
        return min(dp[t][a],dp[t][b]);
    }
    int a[maxn];
    int main()
    {
        int cas = 1;
        while(scanf("%s",ts) != EOF)
        {
            if(ts[0] == '#')
                break;
            int len = strlen(ts);
            for(int i = 0; i < len; i++)
                str[i] = ts[i];
            str[len] = 0;
            printf("Case %d: ",cas++);
            get_sa(str,sa,Rank,height,len,150);
            ini_RMQ(len);
            int cnt = 0,tot = 0;
            for(int i = 1;i <= len;i++)
            {
                for(int j = i;j < len;j+=i)
                {
                    int tk = askRMQ(Rank[j-i],Rank[j]);
                    int m = i - tk%i;
    
                    if(j > i && tk%i) tk = max(tk,askRMQ(Rank[j-i-m],Rank[j-m]));
                    if(tk % i) tk = 0;
                    if(tk) tk = tk/i+1;
                    if(tk > cnt)
                        cnt = tk,tot=0,a[tot++]=i;
                    else if(tk == cnt && a[tot-1] != i)
                        a[tot++] = i;
                }
            }
           // cout <<cnt <<endl;
            int flag = 0;
            for(int i = 1;i < len && !flag;i++)
            {
                for(int j = 0;j < tot && !flag;j++)
                {
                    if(askRMQ(Rank[sa[i]],Rank[sa[i]+a[j]])>=a[j]*(cnt-1))
                    {
                        ts[sa[i]+a[j]*cnt] = '';
                        printf("%s
    ",ts+sa[i]);
                        flag = 1;
                    }
                }
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    PHP数组简介
    如何在不使用系统函数的情况下实现PHP中数组系统函数的功能
    弹性盒布局display:flex详解
    关于JS面向对象中原型和原型链以及他们之间的关系及this的详解
    如何使用AngularJS对表单提交内容进行验证
    如何用canvas画布画旋转的五角星
    MYSQL常用函数以及如何操作数据
    数据库基础以及表的创建
    PHP中的OOP
    PHP中数组的遍历
  • 原文地址:https://www.cnblogs.com/Przz/p/5409572.html
Copyright © 2011-2022 走看看