A Simple Problem with Integers
Time Limit: 5000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4996 Accepted Submission(s): 1576
Problem Description
Let A1, A2, ... , AN be N elements. You need to deal with two kinds of operations. One type of operation is to add a given number to a few numbers in a given interval. The other is to query the value of some element.
Input
There are a lot of test cases.
The first line contains an integer N. (1 <= N <= 50000)
The second line contains N numbers which are the initial values of A1, A2, ... , AN. (-10,000,000 <= the initial value of Ai <= 10,000,000)
The third line contains an integer Q. (1 <= Q <= 50000)
Each of the following Q lines represents an operation.
"1 a b k c" means adding c to each of Ai which satisfies a <= i <= b and (i - a) % k == 0. (1 <= a <= b <= N, 1 <= k <= 10, -1,000 <= c <= 1,000)
"2 a" means querying the value of Aa. (1 <= a <= N)
The first line contains an integer N. (1 <= N <= 50000)
The second line contains N numbers which are the initial values of A1, A2, ... , AN. (-10,000,000 <= the initial value of Ai <= 10,000,000)
The third line contains an integer Q. (1 <= Q <= 50000)
Each of the following Q lines represents an operation.
"1 a b k c" means adding c to each of Ai which satisfies a <= i <= b and (i - a) % k == 0. (1 <= a <= b <= N, 1 <= k <= 10, -1,000 <= c <= 1,000)
"2 a" means querying the value of Aa. (1 <= a <= N)
Output
For each test case, output several lines to answer all query operations.
Sample Input
4 1 1 1 1 14 2 1 2 2 2 3 2 4 1 2 3 1 2 2 1 2 2 2 3 2 4 1 1 4 2 1 2 1 2 2 2 3 2 4
Sample Output
1 1 1 1 1 3 3 1 2 3 4 1
/* hdu 4267 线段树间隔更新 A Simple Problem with Integers 给你两个操作: 1.在[l,r]中(i-l)%k==0的数加上val 2.单点求值 看到题想到的是做过的一个间隔求和的题目,但是这题的k是不固定的 所以并不适用 对于每个数,如果用k的余数将它们标记,可以分成k组,所有k的情况总共55种, 所以用add[55]来保存新添加的值. 然后在查找pos的时候,加上对于每个k而言pos所属组的值即可 hhh-2016-03-26 13:47:26 */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; #define lson (i<<1) #define rson ((i<<1)|1) typedef long long ll; int n,qw; int k; const int maxn = 50050; int po[15][15]; int a[maxn]; struct node { int l,r; int sum; int add[56]; int mid() { return (l+r)>>1; } } tree[maxn*5]; void push_up(int i) { } void build(int l,int r,int i) { tree[i].l = l; tree[i].r = r; tree[i].sum = 0; memset(tree[i].add,0,sizeof(tree[i].add)); if(l == r) return ; int mid = tree[i].mid(); build(l,mid,lson); build(mid+1,r,rson); push_up(i); } void push_down(int i) { if(tree[i].sum) { tree[lson].sum += tree[i].sum; tree[rson].sum += tree[i].sum; for(int j = 0; j < 55; j++) { tree[lson].add[j]+= tree[i].add[j]; tree[rson].add[j]+= tree[i].add[j]; tree[i].add[j] = 0; } tree[i].sum = 0; } } void Insert(int i,int l,int r,int val,int k,int t) { if(tree[i].l >= l && tree[i].r <=r ) { tree[i].sum += val; tree[i].add[po[k][t]] += val; return ; } int mid = tree[i].mid(); push_down(i); if(l <= mid) Insert(lson,l,r,val,k,t); if(r > mid) Insert(rson,l,r,val,k,t); push_up(i); } int query(int i,int pos) { //if(tree[i].l >= l && tree[i].r <= r) if(tree[i].l == tree[i].r) { int tmp = 0; for(int j = 1;j <= 10;j++) tmp += tree[i].add[po[j][pos%j]]; return tmp; } push_down(i); int mid = tree[i].mid(); if(pos <= mid) return query(lson,pos); if(pos > mid) return query(rson,pos); } int main() { int T,cas = 1,cnt = 0; for(int i = 1; i <= 10; i++) { for(int j = 0; j < i; j++) po[i][j] = cnt++; } while(scanf("%d",&n) != EOF) { for(int i = 1;i <= n;i++) scanf("%d",&a[i]); build(1,n,1); int l,r,q; int val,k; scanf("%d",&q); for(int i = 1; i <=q; i++) { int op; scanf("%d",&op); if(op == 1) { scanf("%d%d%d%d",&l,&r,&k,&val); Insert(1,l,r,val,k,l%k); } else { scanf("%d",&l); printf("%d ",query(1,l)+a[l]); } } } return 0; }