zoukankan      html  css  js  c++  java
  • hdu 4747 线段树

    Mex

    Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 2482    Accepted Submission(s): 805


    Problem Description
    Mex is a function on a set of integers, which is universally used for impartial game theorem. For a non-negative integer set S, mex(S) is defined as the least non-negative integer which is not appeared in S. Now our problem is about mex function on a sequence.

    Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.
     
    Input
    The input contains at most 20 test cases.
    For each test case, the first line contains one integer n, denoting the length of sequence.
    The next line contains n non-integers separated by space, denoting the sequence.
    (1 <= n <= 200000, 0 <= ai <= 10^9)
    The input ends with n = 0.
     
    Output
    For each test case, output one line containing a integer denoting the answer.
     
    Sample Input
    3
    0 1 3
    5
    1 0 2 0 1
    0
    Sample Output
    5
    24
    /*
    hdu 4747 线段树
    
    表示开始毫无头绪,总觉得和线段树扯不上什么关系- - 弱TAT
    
    我们要求的是mex[i,j](i~j中不存在的最小非负整数)的和,观察可以发现对于1~n,
    mex[1,i]是递增的,因为你当前mex值可以在后面出现
    
    然后假设去掉a[1],可以发现在a[1]再次出现之前.mex值大于a[1]的都会变成a[1]
    1 0 2 0 1  -> 0 2 3 3 3
    去掉a[1]   ->   1 1 1 3
    
    然后按照这个思路弄即可,先处理出mex[1,i]的情况并插入线段树,然后处理出a[i]下次
    出现的位置。 利用线段树可以求出在a[i]再次出现之前比a[i]大的最小位置,把这段
    全部置为a[i](毕竟这个序列是递增的),并能快速求出和.
    
    hhh-2016-03-24 18:15:48
    */
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <iostream>
    #include <cstring>
    #include <map>
    #include <cstdio>
    #include <vector>
    #include <functional>
    #define lson (i<<1)
    #define rson ((i<<1)|1)
    using namespace std;
    typedef long long ll;
    const int maxn = 500550;
    struct node
    {
        int l,r;
        ll num;
        int Max,add;
        int mid()
        {
            return ((l+r)>>1);
        };
    } tree[maxn<<2];
    
    int a[maxn],nex[maxn],mex[maxn];
    map<int,int> mp;
    
    void update_up(int i)
    {
        tree[i].num = tree[lson].num+tree[rson].num;
        tree[i].Max = max(tree[lson].Max,tree[rson].Max);
    }
    
    void build(int i,int l,int r)
    {
        tree[i].l = l,tree[i].r = r;
        tree[i].add = 0;
        if(l == r)
        {
            tree[i].num = mex[l];
            tree[i].Max = mex[l];
            return ;
        }
        int mid = tree[i].mid();
        build(lson,l,mid);
        build(rson,mid+1,r);
        update_up(i);
    }
    
    void update_down(int i)
    {
        if(tree[i].add)
        {
            tree[lson].add = 1;
            tree[rson].add = 1;
            tree[lson].num = (ll)tree[i].Max*(tree[lson].r-tree[lson].l+1);
            tree[rson].num = (ll)tree[i].Max*(tree[rson].r-tree[rson].l+1);
            tree[lson].Max= tree[i].Max;
            tree[rson].Max= tree[i].Max;
            tree[i].add = 0;
        }
    }
    void Insert(int i,int l,int r,int val)
    {
        if(tree[i].l >= l && r >=  tree[i].r)
        {
            tree[i].num = (ll)(tree[i].r-tree[i].l+1)*val;
            tree[i].Max = val;
            tree[i].add = 1;
            return;
        }
        update_down(i);
        int mid = tree[i].mid();
        if(l <= mid)
            Insert(lson,l,r,val);
        if(r > mid)
            Insert(rson,l,r,val);
        update_up(i);
    }
    int cur;
    void get_k(int i,int k)
    {
        if(tree[i].l ==  tree[i].r)
        {
            cur = tree[i].l;
            return ;
        }
        update_down(i);
        //int mid = tree[i].mid();
        if(k < tree[lson].Max)
            get_k(lson,k);
        else
            get_k(rson,k);
        update_up(i);
    }
    
    ll query(int i,int l,int r)
    {
        if(tree[i].l >= l && r >= tree[i].r)
        {
            return tree[i].num;
        }
        update_down(i);
        int mid = tree[i].mid();
        ll ad = 0;
        if(l <= mid)
           ad += query(lson,l,r);
        if(r > mid)
           ad += query(rson,l,r);
        update_up(i);
        return ad;
    }
    
    int main()
    {
        int n;
        while(scanf("%d",&n) != EOF && n)
        {
            int flag=  0;
            for(int i = 1; i <= n; i++)
            {
                scanf("%d",&a[i]);
            }
    
            int t = 0;
            mp.clear();
            for(int i = 1; i <= n; i++)
            {
                mp[a[i]] = 1;
                //cout << mp[t] <<endl ;
                while(mp.find(t) != mp.end()) t++;
                mex[i] = t;
            }
    
            build(1,1,n);
            mp.clear();
            for(int i = n; i >= 1; i--)
            {
                if(mp[a[i]] == 0) nex[i] = n+1;
                else nex[i] = mp[a[i]];
                mp[a[i]] = i;
            }
            ll ans = 0;
            for(int i = 1; i <= n; i++)
            {
                int nx = nex[i];
                ans += query(1,i,n);
                //cout << ans <<endl;
                if(tree[1].Max > a[i])
                {
                    get_k(1,a[i]);
                    if(cur < nx)
                        Insert(1,cur,nx-1,a[i]);
                    // cout << cur <<" "<<nx << " " << a[i] <<endl;
                }
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    
    /*
    Sample Input
    3
    0 1 3
    5
    1 0 2 0 1
    0
    
    
    Sample Output
    5
    24
    */
    

      

    
    
  • 相关阅读:
    sort
    usaco-3.1-humble-pass
    usaco-3.1-inflate-pass
    usaco-3.1-agrinet-pass
    usaco-2.4-fracdec-pass
    usaco-2.4-comhome-pass
    usaco-2.4-cowtour-pass
    usaco-2.4-maze1-pass
    usaco-2.4-ttwo-pass
    usaco-2.3-concom-pass
  • 原文地址:https://www.cnblogs.com/Przz/p/5409594.html
Copyright © 2011-2022 走看看