zoukankan      html  css  js  c++  java
  • poj3185 高斯消元

    The Water Bowls
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5329   Accepted: 2081

     

    Description

    The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls. 

    Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls). 

    Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?

    Input

    Line 1: A single line with 20 space-separated integers

    Output

    Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0's.

    Sample Input

    0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

    Sample Output

    3

    Hint

    Explanation of the sample: 

    Flip bowls 4, 9, and 11 to make them all drinkable: 
    0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state] 
    0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4] 
    0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9] 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]


    题意:

    给你一排碗,当翻动其中一个时,它和周围两个都翻转,多变元枚举最小值


    /*
    poj3185
    给你20个碗排成一排,当翻动其中一个时,它和周围两个都翻转
    
    */
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    typedef long double ld;
    
    using namespace std;
    const int maxn = 40;
    
    int equ,var;
    int a[maxn][maxn];
    int b[maxn][maxn];
    int x[maxn];
    int free_x[maxn];
    int free_num;
    
    int Gauss()
    {
        int max_r,col,k;
        free_num = 0;
        for(k = 0,col = 0; k < equ && col < var; k++,col++)
        {
            max_r = k;
            for(int i = k+1; i < equ; i++)
            {
                if(abs(a[i][col]) > abs(a[max_r][col]))
                    max_r = i;
            }
            if(a[max_r][col] == 0)
            {
                k --;
                free_x[free_num++] = col;
                continue;
            }
            if(max_r != k)
            {
                for(int j = col; j < var+1; j++)
                    swap(a[k][j],a[max_r][j]);
    
            }
            for(int i = k + 1; i < equ; i++)
            {
                if(a[i][col] != 0)
                {
                    for(int j = col; j < var+1; j++)
                        a[i][j] ^= a[k][j];
                }
            }
    
        }
        for(int i = k; i < equ; i++)
            if(a[i][col] != 0)
                return -1;
        if(k < var) return var-k;
    
        for(int i = var-1; i >= 0; i--)
        {
            x[i] = a[i][var];
            for(int j = i +1; j < var; j++)
                x[i] ^= (a[i][j] && x[j]);
    
        }
        return 0;
    
    }
    
    int n;
    void ini()
    {
        memset(a,0,sizeof(a));
        memset(x,0,sizeof(x));
        equ = 20;
        var = 20;
        for(int i = 0;i < 20;i++)
        {
            a[i][i] = 1;
            if(i > 0) a[i-1][i] = 1;
            if(i < 20-1) a[i+1][i]= 1;
        }
    }
    
    int solve()
    {
        int t = Gauss();
        if(t == -1)
        {
            return t;
        }
        else if(t == 0)
        {
            int ans = 0;
            for(int i = 0; i < n*n; i++)
                ans += x[i];
            return ans;
        }
        else
        {
            int ans = 0x3f3f3f3f;
            int tot = (1 << t);
            for(int i = 0; i < tot; i++)
            {
                int cnt = 0;
                for(int j = 0; j < t; j++)
                {
                    if(i & (1 << j))
                    {
                        cnt ++;
                        x[free_x[j]]= 1;
                    }
                    else x[free_x[j]]= 0;
                }
    
                for(int j = var-t-1; j >= 0; j--)
                {
                    int dex;
                    for(dex = j; dex < var; dex++)
                        if(a[j][dex])
                            break;
                    x[dex] = a[j][var];
                    for(int l = dex +1; l <var ; l++)
                    {
                        if(a[j][l])
                            x[dex] ^= x[l];
                    }
                    cnt += x[dex];
                }
                ans = min(ans,cnt);
            }
            return ans;
        }
    }
    
    int main()
    {
        int tx;
        while(scanf("%d",&tx) != EOF)
        {
            ini();
            if(tx == 1)
                a[0][20] = 1;
            else
                a[0][20] = 0;
            for(int i=  1; i < 20; i ++)
            {
                scanf("%d",&tx);
                if(tx == 1)
                    a[i][20] = 1;
                else
                    a[i][20] = 0;
            }
    
            int t = solve();
            printf("%d
    ",t);
        }
        return 0;
    }
    

      





  • 相关阅读:
    HTTP Basic 验证客户端 C#实现笔记
    泗洪高薪行业
    C#中Math的使用总结
    Android音频底层调试-基于tinyalsa
    我看项目管理第一回:认识利益相关方,提高思想意识
    【剑指Offer学习】【面试题19 :二叉树的镜像】
    算法
    zTree实现地市县三级级联DAO接口实现
    Unix/Linux环境C编程新手教程(12) openSUSECCPP以及Linux内核驱动开发环境搭建
    正尝试在 OS 载入程序锁内执行托管代码。不要尝试在 DllMain 或映像初始化函数内执行托管代码,这样做会导致应用程序挂起。
  • 原文地址:https://www.cnblogs.com/Przz/p/5409642.html
Copyright © 2011-2022 走看看