Problem Description
There is an integer a and n integers b1,…,bn. After selecting some numbers from b1,…,bn in any order, say c1,…,cr, we want to make sure that a mod c1 mod c2 mod… mod cr=0 (i.e., a will become the remainder divided by ci each time, and at the end, we want a to become 0). Please determine the minimum value of r. If the goal cannot be achieved, print −1 instead.
Input
The first line contains one integer T≤5,
which represents the number of testcases.
For each testcase, there are two lines:
1. The first line contains two integers n and a (1≤n≤20,1≤a≤106).
2. The second line contains n integers b1,…,bn (∀1≤i≤n,1≤bi≤106).
For each testcase, there are two lines:
1. The first line contains two integers n and a (1≤n≤20,1≤a≤106).
2. The second line contains n integers b1,…,bn (∀1≤i≤n,1≤bi≤106).
Output
Print T answers
in T lines.
Sample Input
2
2 9
2 7
2 9
6 7
Sample Output
2
-1
用a去模b中的数,问最少需要多少个数才能使a变为0
感觉模的数字大,需要的数可能就会少一点,所以排个序,再暴力解决
#include <iostream> #include <cstdio> #include<algorithm> #include<cstring> using namespace std; int a[30]; bool cmp(int a,int b) { return a > b; } int work(int q,int n) { int minx = 0x3f3f3f3f; int i,j; for(i = 1; i <= n; i++) { int temp = q; for( j = i; j <= n; j++) { if(temp == 0) break; else temp %= a[j]; } if(temp == 0) minx = min(minx,j-i); } return minx; } int main() { int T; int n,all; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&all); for(int i=1; i<=n; i++) scanf("%d",&a[i]); sort(a+1,a+n+1,cmp); int p = work(all,n); if(p != 0x3f3f3f3f) printf("%d ",p); else printf("-1 "); } return 0; }