zoukankan      html  css  js  c++  java
  • hdu 5445 多重背包

    Food Problem

    Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 1243    Accepted Submission(s): 368


    Problem Description
    Few days before a game of orienteering, Bell came to a mathematician to solve a big problem. Bell is preparing the dessert for the game. There are several different types of desserts such as small cookies, little grasshoppers and tiny mantises. Every type of dessert may provide different amounts of energy, and they all take up different size of space.

    Other than obtaining the desserts, Bell also needs to consider moving them to the game arena. Different trucks may carry different amounts of desserts in size and of course they have different costs. However, you may split a single dessert into several parts and put them on different trucks, then assemble the parts at the game arena. Note that a dessert does not provide any energy if some part of it is missing.

    Bell wants to know how much would it cost at least to provide desserts of a total energy of p (most of the desserts are not bought with money, so we assume obtaining the desserts costs no money, only the cost of transportation should be considered). Unfortunately the mathematician is having trouble with her stomach, so this problem is left to you.
     
    Input
    The first line of input contains a integer T(T10) representing the number of test cases.

    For each test case there are three integers n,m,p on the first line (1n200,1m200,0p50000), representing the number of different desserts, the number of different trucks and the least energy required respectively.

    The ith of the n following lines contains three integers ti,ui,vi(1ti100,1ui100,1vi100) indicating that the ith dessert can provide tienergy, takes up space of size ui and that Bell can prepare at most vi of them.

    On each of the next m lines, there are also three integers xj,yj,zj(1xj100,1yj100,1zj100) indicating that the jth truck can carry at most size of xj , hiring each one costs yj and that Bell can hire at most zj of them.
     
    Output
    For every test case output the minimum cost to provide the dessert of enough energy in the game arena if it is possible and its cost is no more than 50000. Otherwise, output TAT on the line instead.
     
    Sample Input
    4 1 1 7 14 2 1 1 2 2 1 1 10 10 10 1 5 7 2 5 3 34 1 4 1 9 4 2 5 3 3 1 3 3 5 3 2 3 4 5 6 7 5 5 3 8 1 1 1 1 2 1 1 1 1
     
    Sample Output
    4 14 12 TAT
    /*
    hdu 5445 多重背包
    
    problem:
    给一场运动会提供食物,每种食物提供ti能量,占用vi空间,最多可提供ui个,把食物运到指定地点,每种车可以运送ai体积的
    食物,消耗bi的金钱,总共有ci个这种车,问给运动会提供至少p的能量,最少需要花多少运费
    (每个食物可以拆开来运)
    
    solve:
    可以将其分成两个多重背包计算,先计算出运送指定能量的食物最少需要多少的空间,然后在这个空间的基础上计算最少需要
    的花费.结果RE,后来发现这个空间可能很大.
    而题目中说了50000这个界限,所以直接计算出50000的花费能够达到的最大空间
    
    hhh-2016-08-17 15:13:15
    */
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <map>
    #define lson  i<<1
    #define rson  i<<1|1
    #define ll long long
    #define key_val ch[ch[root][1]][0]
    using namespace std;
    const int maxn = 1010;
    const int inf = 0x3f3f3f3f;
    int dp[51000];
    int ta,a,c;
    
    void cal_min(int cost,int val,int num,int m)
    {
        if(cost * num >= m)
        {
            for(int i = cost; i <= m; i++)
            {
                dp[i] = min(dp[i],dp[i-cost] + val);
            }
        }
        else
        {
            int k = 1;
            while(k < num)
            {
                for(int i = m; i >= cost*k; i--)
                    dp[i] = min(dp[i],dp[i-cost*k]+val*k);
                num -= k;
                k *= 2;
            }
            for(int i = m; i >= cost*num; i--)
                dp[i] = min(dp[i],dp[i-cost*num]+val*num);
        }
    }
    
    void cal_max(int cost,int val,int num,int m)
    {
        if(cost * num >= m)
        {
            for(int i = cost; i <= m; i++)
            {
                dp[i] = max(dp[i],dp[i-cost] + val);
            }
        }
        else
        {
            int k = 1;
            while(k < num)
            {
                for(int i = m; i >= cost*k; i--)
                    dp[i] = max(dp[i],dp[i-cost*k]+val*k);
                num -= k;
                k *= 2;
            }
            for(int i = m; i >= cost*num; i--)
                dp[i] = max(dp[i],dp[i-cost*num]+val*num);
        }
    }
    
    int main()
    {
    //    freopen("in.txt","r",stdin);
        int n,m,cnt;
        int T;
        cin >> T;
        while(T--)
        {
            memset(dp,inf,sizeof(dp));
            dp[0] = 0;
            scanf("%d%d%d",&n,&cnt,&m);
            for(int i = 1; i <= n; i++)
            {
                scanf("%d%d%d",&a,&c,&ta);
                cal_min(a,c,ta,m + 100); //因为每个能量最多100,所以最大界限为m+100
            }
            int minpart = inf;
            for(int i = m; i <= m+100; i++)
            {
                minpart = min(minpart,dp[i]);
            }
    
    
    //        cout <<"m:" <<m <<"  min:"<<minpart <<endl;
            memset(dp,0,sizeof(dp));
            for(int i = 1; i <= cnt; i++)
            {
                scanf("%d%d%d",&a,&c,&ta);
                cal_max(c,a,ta,50000+100);
            }
            int ans = inf;
            for(int i = 0;i <= 50000;i++){
                if(dp[i] >= minpart)
                {
                    ans = i;
                    break;
                }
            }
            if(ans == inf)
                printf("TAT
    ");
            else
                printf("%d
    ",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    #Git 21天打卡第一天 01天0526
    老徐第六期百人计划之职业发展方向&学习方向
    LR12.53安装中文补丁包,录制后回放脚本一致卡在编译的问题
    常用oracle语句整理
    LoadRunner11之批量插入SQL数据~2
    LoadRunner12之SQLServer数据库批量插入--.Net协议
    Jmeter连接Oracle数据库简单使用
    AppScan安装使用
    SQL多表连接
    [剑指Offer] 4.二维数组的查找
  • 原文地址:https://www.cnblogs.com/Przz/p/5792161.html
Copyright © 2011-2022 走看看