zoukankan      html  css  js  c++  java
  • hdu 5317 合数分解+预处理

    RGCDQ

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2818    Accepted Submission(s): 1108


    Problem Description
    Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (Li<jR)
     
    Input
    There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.
    In the next T lines, each line contains L, R which is mentioned above.

    All input items are integers.
    1<= T <= 1000000
    2<=L < R<=1000000
     
    Output
    For each query,output the answer in a single line. 
    See the sample for more details.
     
    Sample Input
    2 2 3 3 5
     
    Sample Output
    1 1
    /*
    hdu 5317 合数分解+预处理
    
    problem:
    查找区间[l,r]中 gcd(F[a[i]],F[a[j]])的最大值. F[x]为x的分解出的质因子种类数
    
    solve:
    可以先计算一下,1e6时质因子最多有7个. 所以可以dp[maxn][7]先预处理出质因子个数的前缀和.
    然后查找 1~7谁出现了2次及以上
    
    hhh-2016-08-21 10:38:45
    */
    #pragma comment(linker,"/STACK:124000000,124000000")
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <map>
    #define lson  ch[0]
    #define rson  ch[1]
    #define ll long long
    #define clr(a,b) memset(a,b,sizeof(a))
    #define key_val ch[ch[root][1]][0]
    using namespace std;
    const int maxn = 1000000;
    const int INF = 1e9+10;
    
    
    int prime[maxn+1];
    
    void getPrime()
    {
        memset(prime,0,sizeof(prime));
        for(int i = 2;i <= maxn;i++)
        {
            if(!prime[i]) prime[++prime[0]] = i;
            for(int j = 1;j <= prime[0] && prime[j] <= maxn/i;j++)
            {
                prime[prime[j]*i] = 1;
                if(i % prime[j] == 0) break;
            }
        }
    }
    
    int getFactor(int x)
    {
        int t = x;
        int fant = 0;
        for(int i = 1;prime[i] <= t/prime[i];i++)
        {
            if(t % prime[i] == 0)
            {
                fant ++;
                while(t % prime[i] == 0)
                    t /= prime[i];
            }
        }
        if(t != 1)
            fant ++;
        return fant;
    }
    
    int dp[maxn+1][7];
    
    int main()
    {
        getPrime();
        for(int i = 0;i <= 7;i++)
            dp[0][i] = 0;
        for(int i = 1;i <= maxn;i++)
        {
            int t = getFactor(i);
            for(int j = 0;j < 7;j++)
            {
                if(t == j+1)
                    dp[i][j] = dp[i-1][j] + 1;
                else
                    dp[i][j] = dp[i-1][j];
            }
        }
        int T;
        int a,b;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&a,&b);
            int tMax = 0;
            for(int i = 6;i >= 0;i--)
            {
                if(dp[b][i] - dp[a-1][i] > 1)
                {
                    tMax =i;
                    break;
                }
            }
            printf("%d
    ",tMax+1);
        }
    }
    

      

  • 相关阅读:
    AC日记——可能的路径 51nod 1247
    AC日记——[国家集训队2011]旅游(宋方睿) cogs 1867
    近期将要学习的内容(flag)
    Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)
    Cogs 746. [网络流24题] 骑士共存(最大独立集)
    Cogs 729. [网络流24题] 圆桌聚餐
    [网络流24题]飞行员配对方案问题
    Hdu 3549 Flow Problem(最大流)
    Cogs 14. [网络流24题] 搭配飞行员(二分图匹配)
    Cogs 728. [网络流24题] 最小路径覆盖问题
  • 原文地址:https://www.cnblogs.com/Przz/p/5792279.html
Copyright © 2011-2022 走看看