zoukankan      html  css  js  c++  java
  • hdu 5317 合数分解+预处理

    RGCDQ

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2818    Accepted Submission(s): 1108


    Problem Description
    Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (Li<jR)
     
    Input
    There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.
    In the next T lines, each line contains L, R which is mentioned above.

    All input items are integers.
    1<= T <= 1000000
    2<=L < R<=1000000
     
    Output
    For each query,output the answer in a single line. 
    See the sample for more details.
     
    Sample Input
    2 2 3 3 5
     
    Sample Output
    1 1
    /*
    hdu 5317 合数分解+预处理
    
    problem:
    查找区间[l,r]中 gcd(F[a[i]],F[a[j]])的最大值. F[x]为x的分解出的质因子种类数
    
    solve:
    可以先计算一下,1e6时质因子最多有7个. 所以可以dp[maxn][7]先预处理出质因子个数的前缀和.
    然后查找 1~7谁出现了2次及以上
    
    hhh-2016-08-21 10:38:45
    */
    #pragma comment(linker,"/STACK:124000000,124000000")
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <map>
    #define lson  ch[0]
    #define rson  ch[1]
    #define ll long long
    #define clr(a,b) memset(a,b,sizeof(a))
    #define key_val ch[ch[root][1]][0]
    using namespace std;
    const int maxn = 1000000;
    const int INF = 1e9+10;
    
    
    int prime[maxn+1];
    
    void getPrime()
    {
        memset(prime,0,sizeof(prime));
        for(int i = 2;i <= maxn;i++)
        {
            if(!prime[i]) prime[++prime[0]] = i;
            for(int j = 1;j <= prime[0] && prime[j] <= maxn/i;j++)
            {
                prime[prime[j]*i] = 1;
                if(i % prime[j] == 0) break;
            }
        }
    }
    
    int getFactor(int x)
    {
        int t = x;
        int fant = 0;
        for(int i = 1;prime[i] <= t/prime[i];i++)
        {
            if(t % prime[i] == 0)
            {
                fant ++;
                while(t % prime[i] == 0)
                    t /= prime[i];
            }
        }
        if(t != 1)
            fant ++;
        return fant;
    }
    
    int dp[maxn+1][7];
    
    int main()
    {
        getPrime();
        for(int i = 0;i <= 7;i++)
            dp[0][i] = 0;
        for(int i = 1;i <= maxn;i++)
        {
            int t = getFactor(i);
            for(int j = 0;j < 7;j++)
            {
                if(t == j+1)
                    dp[i][j] = dp[i-1][j] + 1;
                else
                    dp[i][j] = dp[i-1][j];
            }
        }
        int T;
        int a,b;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&a,&b);
            int tMax = 0;
            for(int i = 6;i >= 0;i--)
            {
                if(dp[b][i] - dp[a-1][i] > 1)
                {
                    tMax =i;
                    break;
                }
            }
            printf("%d
    ",tMax+1);
        }
    }
    

      

  • 相关阅读:
    Java后端面试题大汇总,冲刺金三银四
    面试官:小伙子,Mybatis的本质和原理说一下
    面试官问:大量的 TIME_WAIT 状态 TCP 连接,对业务有什么影响?怎么处理?
    便捷搭建 Zookeeper 服务器的方法,好用,收藏~
    10 个冷门但又非常实用的 Docker 使用技巧
    mitmproxy 抓包工具(1)
    基于alpine创建Scrapy镜像
    强大的输入框-应用快速启动uTools
    Interceptor、Filter、Servlet的区别
    利用三层判断sql数据库中编码是否已经存在(个人拙作,不喜勿喷)
  • 原文地址:https://www.cnblogs.com/Przz/p/5792279.html
Copyright © 2011-2022 走看看