zoukankan      html  css  js  c++  java
  • hdu 5514 Frogs(容斥)

    Frogs

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1315    Accepted Submission(s): 443


    Problem Description
    There are m stones lying on a circle, and n frogs are jumping over them.
    The stones are numbered from 0 to m1 and the frogs are numbered from 1 to n. The i-th frog can jump over exactly ai stones in a single step, which means from stone j mod m to stone (j+ai) mod m (since all stones lie on a circle).

    All frogs start their jump at stone 0, then each of them can jump as many steps as he wants. A frog will occupy a stone when he reach it, and he will keep jumping to occupy as much stones as possible. A stone is still considered ``occupied" after a frog jumped away.
    They would like to know which stones can be occupied by at least one of them. Since there may be too many stones, the frogs only want to know the sum of those stones' identifiers.
     
    Input
    There are multiple test cases (no more than 20), and the first line contains an integer t,
    meaning the total number of test cases.

    For each test case, the first line contains two positive integer n and m - the number of frogs and stones respectively (1n104, 1m109).

    The second line contains n integers a1,a2,,an, where ai denotes step length of the i-th frog (1ai109).
     
    Output
    For each test case, you should print first the identifier of the test case and then the sum of all occupied stones' identifiers.
     
    Sample Input
    3
    2 12
    9 10
    3 60
    22 33 66
    9 96
    81 40 48 32 64 16 96 42 72
     
    Sample Output
    Case #1: 42
    Case #2: 1170
    Case #3: 1872
    /*
    hdu 5514 Frogs(容斥)
    
    problem:
    有n只青蛙和围成一个圈的m个石头. 每只青蛙可以跳a[i]步. 求所有被占领过的石头的编号和
    
    solve:
    可以发现青蛙会经过 GCD(a[i],m)的倍数的点.但是有很多重复跳过的石头. 所以会想到容斥.
    如果暴力肯定要GG.   可以发现青蛙只会经过gcd(x,m)的点,也就是m的因子.
    所以可以把枚举m改成枚举m的因子.  然后利用容斥减去重复的就行.  
    
    hhh-2016-08-30 16:30:55
    */
    #pragma comment(linker,"/STACK:124000000,124000000")
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <math.h>
    #include <queue>
    #include <set>
    #include <map>
    #define lson  i<<1
    #define rson  i<<1|1
    #define ll long long
    #define clr(a,b) memset(a,b,sizeof(a))
    #define scanfi(a) scanf("%d",&a)
    #define scanfs(a) scanf("%s",a)
    #define scanfl(a) scanf("%I64d",&a)
    #define key_val ch[ch[root][1]][0]
    #define inf 1e9
    using namespace std;
    const ll mod = 1e9+7;
    const int maxn = 20005;
    int fac[maxn];
    int fcnt;
    int vis[maxn],hac[maxn];
    
    int gcd(int a,int b)
    {
        return b ? gcd(b,a%b) : a;
    }
    
    int main()
    {
        int T,n,m;
    //    freopen("in.txt","r",stdin);
        scanfi(T);
        int cas = 1;
        while(T--)
        {
            scanfi(n),scanfi(m);
            fcnt = 0;
            for(int i = 1;i*i <= m;i++)
            {
                if(m % i == 0)
                {
                    fac[fcnt++] = i;
                    if(i *i != m)
                        fac[fcnt ++ ] = m/i;
                }
            }
            sort(fac,fac+fcnt);
    //        for(int i = 0;i < fcnt;i++)
    //            cout << fac[i] <<" ";
    //        cout <<endl;
            int x;
            clr(vis,0),clr(hac,0);
            for(int i = 1;i <= n;i++)             //处理会经过哪些因子
            {
                scanfi(x);
                x = gcd(x,m);
                for(int j = 0;j < fcnt;j++)
                {
                    if(fac[j] % x== 0)
                        vis[j] = 1;
                }
            }
            vis[fcnt-1] = 0;
            ll ans = 0;
            for(int i = 0;i < fcnt;i++)
            {
                if(vis[i] != hac[i])
                {
                    int t = (m-1)/fac[i];
                    ans += (ll)t*(t+1)/2 * fac[i] * (vis[i] - hac[i]);         //容斥原理. vis应该计算次数,hac已经计算次数
                    t =  (vis[i] - hac[i]);
                    for(int j = 0;j < fcnt;j++)
                    {
                        if(fac[j] % fac[i] == 0)
                            hac[j] +=   t;
                    }
                }
            }
            printf("Case #%d: %I64d
    ",cas++,ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    各类Http请求状态(status)及其含义 速查列表 xmlhttp status
    Microsoft Visual Studio 2010 正式版下载[含旗舰版序列号](中、英文版)
    【分享】开源或免费的ASP.NET web应用列表
    线程间操作无效: 从不是创建控件“Control Name'”的线程访问它问题的解决方案及原理分析
    Asp.Net中多语言的实现
    Oracle 数字与空值的排序问题
    新版微软一站式示例代码库 6月2日更新下载。
    .NET反射机制简介
    Decimal与double类型误差
    用动态菜单增强.NET应用程序
  • 原文地址:https://www.cnblogs.com/Przz/p/5822612.html
Copyright © 2011-2022 走看看