zoukankan      html  css  js  c++  java
  • hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 439    Accepted Submission(s): 155


    Problem Description
    You are given a rooted tree of N nodes, labeled from 1 to N. To the ith node a non-negative value ai is assigned.An ordered pair of nodes (u,v) is said to be weakif
      (1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);
      (2) au×avk.

    Can you find the number of weak pairs in the tree?
     
    Input
    There are multiple cases in the data set.
      The first line of input contains an integer T denoting number of test cases.
      For each case, the first line contains two space-separated integers, N and k, respectively.
      The second line contains N space-separated integers, denoting a1 to aN.
      Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v.

      Constrains: 
      
      1N105 
      
      0ai109 
      
      0k1018
     
    Output
    For each test case, print a single integer on a single line denoting the number of weak pairs in the tree.
     
    Sample Input
    1 2 3 1 2 1 2
     
    Sample Output
    1
    /*
    hdu 5877 线段树
    
    problem:
    给你一棵n个节点的有根树,每个节点有价值a[i].   问有多少个点对(u,v)满足:u是v的祖先且a[u]*a[v] <= k
    
    solve:
    先找出这个树的根节点.
    因为要求u是v的祖先,所以相当于v的父亲到根节点的所有点. 所以可以在树的遍历的时候把走过点的值存入线段树中,当走到第i个节点值
    求出线段树中[1,k/a[i]]总共有多少个值就行. 然后递归回退时在把这个点删掉.
    数据很大所以再进行一下离散化处理.
    
    hhh-2016-09-11 09:22:59
    */
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <stdio.h>
    #include <cstring>
    #include <vector>
    #include <math.h>
    #include <queue>
    #include <set>
    #define lson  i<<1
    #define rson  i<<1|1
    #include <map>
    #define ll long long
    
    using namespace std;
    
    const int maxn = 200100;
    
    int a[maxn];
    
    struct Node
    {
        int l,r;
        int val;
    } tree[maxn <<2];
    
    void push_up(int i)
    {
        tree[i].val=  tree[lson].val  + tree[rson].val;
    }
    
    void build(int i,int l,int r)
    {
        tree[i].l = l,tree[i].r = r;
        tree[i].val = 0;
        if(l == r)
        {
            return ;
        }
        int mid = (tree[i].l + tree[i].r) >> 1;
        build(lson,l,mid);
        build(rson,mid+1,r);
        push_up(i);
    }
    
    void update(int i,int k,int va)
    {
        if(tree[i].l == tree[i].r && tree[i].l == k)
        {
            tree[i].val += va;
            return;
        }
        int mid = (tree[i].l + tree[i].r) >> 1;
        if(k <= mid)
            update(lson,k,va);
        else
            update(rson,k,va);
        push_up(i);
    }
    
    int query(int i,int l,int r)
    {
        if(l > r)
            return 0;
        if(tree[i].l >= l && tree[i].r <= r)
        {
            return tree[i].val;
        }
        int tans = 0;
        int mid = (tree[i].l + tree[i].r ) >> 1;
        if(l <= mid)
            tans += query(lson,l,r);
        if(r > mid)
            tans += query(rson,l,r);
        return tans;
    }
    
    struct node
    {
        int next;
        int to;
    } edge[maxn];
    ll k;
    int ta,tot,n;
    int head[maxn];
    int deep[maxn];
    int t[maxn];
    void addedge(int from,int to)
    {
        edge[tot].to=to;
        edge[tot].next=head[from];
        head[from]=tot++;
    }
    ll ans = 0;
    void dfs(int u,int fa)
    {
        int o=lower_bound(t,t+ta,k/a[u])-t;
        ans+=query(1,0,o);
    
        int tk=lower_bound(t,t+ta,a[u])-t;
        update(1,tk,1);
        for(int i=head[u]; ~i; i=edge[i].next)
        {
            int v=edge[i].to;
            dfs(v,u);
        }
        update(1,tk,-1);
    }
    
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d %I64d",&n,&k);
            int cnt=0;
            for(int i=1; i<=n; i++)
            {
                scanf("%I64d",&a[i]);
                t[cnt++]=a[i];
            }
            for(int i=1; i<=n; i++) t[cnt++]=k/a[i];
    
            sort(t,t+cnt);
            ta=unique(t,t+cnt)-t;
    
            tot=0;
            memset(head,-1,sizeof(head));
            memset(deep,0,sizeof(deep));
    
            for(int i=0; i<n-1; i++)
            {
                int u,v;
                scanf("%d %d",&u,&v);
                addedge(u,v);
                deep[v]++;
            }
    
            ans=0;
            build(1,0,ta);
            for(int i=1; i<=n; i++)
                if(deep[i]==0)
                    dfs(i,-1);
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    zipfile模块——读取(查看)zip压缩文件
    line[:1]和split(',')
    csv文件——简单读操作01
    读取文件内容——读取一个二进制文件,然后保存到另外一个文件
    zipfile模块——从zip文件中 解压缩
    读写操作文件——open()函数与读写文件01
    文件的操作
    csv文件——简单读操作01
    读写操作文件——open()函数与读写文件02
    读取文件内容——open函数
  • 原文地址:https://www.cnblogs.com/Przz/p/5861042.html
Copyright © 2011-2022 走看看