- 文章转载自:微信公众号「机器学习炼丹术」
- 作者:炼丹兄(已授权)
- 作者联系方式:微信cyx645016617(欢迎交流共同进步)
本次的内容主要讲解NCCNormalized cross-correlation 归一化互相关。
两张图片是否是同一个内容,现在深度学习的方案自然是用神经网络,比方说:孪生网络的架构做人面识别等等;
在传统的非参数方法中,常见的也有相关系数等。我在上一片文章voxelmorph的模型的学习中发现,在医学图像配准任务(不限于医学),衡量两个图片相似的度量有一种叫做NCC的
而这个NCC就是Normalized Cross-Correlation归一化互相关系数。
1 互相关系数
如果你知道互相关系数,那么你就能很好的理解归一化互相关系数。
相关系数的计算公式如下:
公式中的X,Y分别表示两个图片,(Cov(X,Y))表示两个图片的协方差,(Var(X))表示X自身的方差;
2 归一化互相关NCC
如果把一张图片,按照一定的像素,比方说9x9的一个框滑动,那么就可以把图片分成很多的9x9的小图片,那么NCC就是X,Y两张大图片中的对应的小图片的互相关系数的平均值。
这里看一下协方差的计算方式:
(Cov(X,Y) = E[(X-E(X))(Y-E(Y))])
方差的计算为:
(Var(X) = E[(X-E(X))^2])
其实NCC不难理解,但是如何用代码计算呢?当然我们可以一行一行遍历求解,但是这样时间复杂度过高,所以我们做好还是选择矩阵运算。
3 NCC损失函数的代码
class NCC:
"""
Local (over window) normalized cross correlation loss.
"""
def __init__(self, win=None):
self.win = win
def loss(self, y_true, y_pred):
I = y_true
J = y_pred
# get dimension of volume
# assumes I, J are sized [batch_size, *vol_shape, nb_feats]
ndims = len(list(I.size())) - 2
assert ndims in [1, 2, 3], "volumes should be 1 to 3 dimensions. found: %d" % ndims
# set window size
win = [9] * ndims if self.win is None else self.win
# compute filters
sum_filt = torch.ones([1, 1, *win]).to("cuda")
pad_no = math.floor(win[0]/2)
if ndims == 1:
stride = (1)
padding = (pad_no)
elif ndims == 2:
stride = (1,1)
padding = (pad_no, pad_no)
else:
stride = (1,1,1)
padding = (pad_no, pad_no, pad_no)
# get convolution function
conv_fn = getattr(F, 'conv%dd' % ndims)
# compute CC squares
I2 = I * I
J2 = J * J
IJ = I * J
I_sum = conv_fn(I, sum_filt, stride=stride, padding=padding)
J_sum = conv_fn(J, sum_filt, stride=stride, padding=padding)
I2_sum = conv_fn(I2, sum_filt, stride=stride, padding=padding)
J2_sum = conv_fn(J2, sum_filt, stride=stride, padding=padding)
IJ_sum = conv_fn(IJ, sum_filt, stride=stride, padding=padding)
win_size = np.prod(win)
u_I = I_sum / win_size
u_J = J_sum / win_size
cross = IJ_sum - u_J * I_sum - u_I * J_sum + u_I * u_J * win_size
I_var = I2_sum - 2 * u_I * I_sum + u_I * u_I * win_size
J_var = J2_sum - 2 * u_J * J_sum + u_J * u_J * win_size
cc = cross * cross / (I_var * J_var + 1e-5)
return -torch.mean(cc)
这段代码其实不是很好看懂,我思考了很久才明白。其中的关键就在于如何理解:
# compute CC squares
I2 = I * I
J2 = J * J
IJ = I * J
I_sum = conv_fn(I, sum_filt, stride=stride, padding=padding)
J_sum = conv_fn(J, sum_filt, stride=stride, padding=padding)
I2_sum = conv_fn(I2, sum_filt, stride=stride, padding=padding)
J2_sum = conv_fn(J2, sum_filt, stride=stride, padding=padding)
IJ_sum = conv_fn(IJ, sum_filt, stride=stride, padding=padding)
win_size = np.prod(win)
u_I = I_sum / win_size
u_J = J_sum / win_size
cross = IJ_sum - u_J * I_sum - u_I * J_sum + u_I * u_J * win_size
I_var = I2_sum - 2 * u_I * I_sum + u_I * u_I * win_size
J_var = J2_sum - 2 * u_J * J_sum + u_J * u_J * win_size
我们可以才到,这个cross应该是协方差部分,I_var和J_var是方差部分。
我们对协方差公式进行推导:(Cov(X,Y) = E[(X-E(X))(Y-E(Y))])
(=E[XY-XE(Y)-YE(X)+E(X)E(Y)])
这样刚好和cross对应上。
- IJ_sum = E[XY]
- u_J * I_sum = E[XE(Y)]
- u_I * u_J * win_size = E[E(X)E(Y)]
对方差公式进行推导:(Var(X) = E[(X-E(X))^2]=E[X^2-2XE(X)+E(X)^2])
- J2_sum = E(X^2)
- 2 * u_J * J_sum = E[2XE(X)]
- u_J * u_J * win_size = E[E(X)^2]