zoukankan      html  css  js  c++  java
  • 最短路的三种写法模板

    MPI Maelstrom最短路的三种写法

    MPI Maelstrom

    TimeLimit:1000MS MemoryLimit:10000K

    64-bit integer IO format:%lld

    已解决 | 点击收藏

    Problem Description

    BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distributed shared memory machine with a hierarchical communication subsystem. Valentine McKee's research advisor, Jack Swigert, has asked her to benchmark the new system. Since the Apollo is a distributed shared memory machine, memory access and communication times are not uniform,'' Valentine told Swigert. Communication is fast between processors that share the same memory subsystem, but it is slower between processors that are not on the same subsystem. Communication between the Apollo and machines in our lab is slower yet.'' How is Apollo's port of the Message Passing Interface (MPI) working out?'' Swigert asked. Not so well,'' Valentine replied. To do a broadcast of a message from one processor to all the other n-1 processors, they just do a sequence of n-1 sends. That really serializes things and kills the performance.'' Is there anything you can do to fix that?'' Yes,'' smiled Valentine. There is. Once the first processor has sent the message to another, those two can then send messages to two other hosts at the same time. Then there will be four hosts that can send, and so on.'' Ah, so you can do the broadcast as a binary tree!'' Not really a binary tree -- there are some particular features of our network that we should exploit. The interface cards we have allow each processor to simultaneously send messages to any number of the other processors connected to it. However, the messages don't necessarily arrive at the destinations at the same time -- there is a communication cost involved. In general, we need to take into account the communication costs for each link in our network topologies and plan accordingly to minimize the total time required to do a broadcast.''

    Input

    The input will describe the topology of a network connecting n processors. The first line of the input will be n, the number of processors, such that 1 <= n <= 100. The rest of the input defines an adjacency matrix, A. The adjacency matrix is square and of size n x n. Each of its entries will be either an integer or the character x. The value of A(i,j) indicates the expense of sending a message directly from node i to node j. A value of x for A(i,j) indicates that a message cannot be sent directly from node i to node j. Note that for a node to send a message to itself does not require network communication, so A(i,i) = 0 for 1 <= i <= n. Also, you may assume that the network is undirected (messages can go in either direction with equal overhead), so that A(i,j) = A(j,i). Thus only the entries on the (strictly) lower triangular portion of A will be supplied. The input to your program will be the lower triangular section of A. That is, the second line of input will contain one entry, A(2,1). The next line will contain two entries, A(3,1) and A(3,2), and so on.

    Output

    Your program should output the minimum communication time required to broadcast a message from the first processor to all the other processors.

    SampleInput

    5
    50
    30 5
    100 20 50
    10 x x 10
    

    SampleOutput

    35
    

    链接

    求1点单源最短路最长的一条,给了下三角邻接矩阵

    Floyd

    
    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <cmath>
    
    using namespace std;
    const int maxn = 105;
    const int inf  = 0x3f3f3f3f;
    
    int mp[maxn][maxn],n;
    
    void init() {
        for(int i = 1; i <= n; i ++ ) {
            for(int j = 1; j <= n; j ++ ) {
                mp[i][j] = i == j ? 0 : inf;
            }
        }
    }
    
    int main()
    {
        char str[15];
        int num = 0;
        while(~scanf("%d",&n)) {
            init();
            for(int i = 2; i <= n; i ++ ) {
                for(int j = 1; j < i; j ++ ) {
                    scanf("%s",str);
                    if(str[0] != 'x') {
                        sscanf(str,"%d",&num);
                        mp[i][j] = mp[j][i] = num;
                    }
                }
            }
            for(int k = 1; k <= n; k ++ ) {
                for(int i = 1; i <= n; i ++ ) {
                    for(int j = 1; j <= n; j ++ ) {
                        mp[i][j] = min(mp[i][j],mp[i][k]+mp[k][j]);
                    }
                }
            }
            int ans = 0;
            for(int i = 2; i <= n; i ++ ) {
                ans = max(ans,mp[i][1]);
            }
            printf("%d
    ",ans);
        }
    
        return 0;
    }
    

    SPFA

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <cmath>
    
    using namespace std;
    const int maxn = 105;
    const int maxm = maxn*maxn/2;
    const int inf  = 0x3f3f3f3f;
    
    struct Node {
        int to,w,next;
    } edge[maxm];
    int first[maxn],sign;
    
    int n,m;
    
    void init() {
        for(int i = 1; i <= n; i ++ ) {
            first[i] = 0;
        }
        sign = 1;
    }
    
    void add_edge(int u,int v,int w) {
        edge[sign].to = v;
        edge[sign].w  = w;
        edge[sign].next = first[u];
        first[u] = sign ++;
    }
    
    int spfa(int s) {
        int inq[maxn],dis[maxn];
        queue<int>que;
        for(int i = 1; i <= n; i ++ ) {
            inq[i] = 0;
            dis[i] = inf;
        }
        dis[s] = 0, inq[s] = 1;
        que.push(s);
        while(!que.empty()) {
            int now = que.front();
            que.pop();
            inq[now] = 0;
            for(int i = first[now]; i ; i = edge[i].next) {
                int to = edge[i].to;
                int ww = edge[i].w;
                if(dis[to] > dis[now] + ww) {
                    dis[to] = dis[now] + ww;
                    if(!inq[to]) {
                        que.push(to);
                        inq[to] = 1;
                    }
                }
            }
        }
        int ans = 0;
        for(int i = 2; i <= n; i ++ ) {
            ans = max(ans,dis[i]);
        }
        return ans;
    }
    
    int main()
    {
        char str[15];
        int num = 0;
        while(~scanf("%d",&n)) {
            init();
            for(int i = 2; i <= n; i ++ ) {
                for(int j = 1; j < i; j ++ ) {
                    scanf("%s",str);
                    if(str[0] != 'x') {
                        sscanf(str,"%d",&num);
                        add_edge(i,j,num);
                        add_edge(j,i,num);
                    }
                }
            }
            printf("%d
    ",spfa(1));
        }
        return 0;
    }
    

    dijkstra+priority_queue

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <cmath>
    
    using namespace std;
    const int maxn = 105;
    const int maxm = maxn*maxn/2;
    const int inf  = 0x3f3f3f3f;
    
    struct Node {
        int to,w,next;
    } edge[maxm];
    int first[maxn],sign;
    
    int n,m;
    
    void init() {
        for(int i = 1; i <= n; i ++ ) {
            first[i] = 0;
        }
        sign = 1;
    }
    
    void add_edge(int u,int v,int w) {
        edge[sign].to = v;
        edge[sign].w  = w;
        edge[sign].next = first[u];
        first[u] = sign ++;
    }
    
    struct Heap_Node {
        int to,cost;
        Heap_Node(){}
        Heap_Node(int f,int s):to(f),cost(s){}
        friend bool operator < (Heap_Node a,Heap_Node b) {
            return a.cost > b.cost;
        }
    };
    
    int dijkstra(int s) {
        priority_queue<Heap_Node> heap;
        int dis[maxn], vis[maxn] = {0};
        heap.push(Heap_Node(s,0));
        while(!heap.empty()) {
            Heap_Node now = heap.top();
            heap.pop();
            if(!vis[now.to]) {
                vis[now.to] = 1;
                dis[now.to] = now.cost;
                for(int i = first[now.to]; i; i = edge[i].next) {
                    int to = edge[i].to;
                    int ww = edge[i].w;
                    if(!vis[to]) {
                        heap.push(Heap_Node(to,now.cost+ww));
                    }
                }
            }
        }
        int ans = 0;
        for(int i = 1; i <= n; i ++ ) {
            ans = max(ans,dis[i]);
        }
        return ans;
    }
    
    int main() {
        char str[15];
        int num = 0;
        while(~scanf("%d",&n)) {
            init();
            for(int i = 2; i <= n; i ++ ) {
                for(int j = 1; j < i; j ++ ) {
                    scanf("%s",str);
                    if(str[0] != 'x') {
                        sscanf(str,"%d",&num);
                        add_edge(i,j,num);
                        add_edge(j,i,num);
                    }
                }
            }
            printf("%d
    ",dijkstra(1));
        }
        return 0;
    }
    
  • 相关阅读:
    【LeetCode】006 ZigZag Conversion
    【LeetCode】009 Palindrome Number
    【LeetCode】008 String to Integer (atoi)
    【LeetCode】012 013 Roman Integer
    react-native 入门资源合集
    Thread和ExecutorService(一)
    DrawerLayout、CoordinatorLayout、CollapsingToolbarLayout的使用--AndroidSupportDesign练手
    Valid Number
    When Is Cheryl's Birthday
    【笔试】——常用运算符
  • 原文地址:https://www.cnblogs.com/Q1143316492/p/7879019.html
Copyright © 2011-2022 走看看