zoukankan      html  css  js  c++  java
  • POJ 3678 2-SAT简单题

    POJ 3678 2-SAT

    题目链接

    Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:

    Xa op Xb = c
    The calculating rules are:
    AND 0 1
    0 0 0
    1 0 1
    OR 0 1
    0 0 1
    1 1 1
    XOR 0 1
    0 0 1
    1 1 0

    Given a Katu Puzzle, your task is to determine whether it is solvable.

    Input

    The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
    The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.

    Output

    Output a line containing "YES" or "NO".

    Sample Input

    4 4

    0 1 1 AND

    1 2 1 OR

    3 2 0 AND

    3 0 0 XOR

    Sample Output

    YES

    Hint
    X0 = 1, X1 = 1, X2 = 0, X3 = 1.

    题意

    n个点,m个关系,每个关系给a,b,c三个数字,和一个字符串(or,and,xor)表示
    a opt b == c,然后问你是否有一种取值满足所有关系

    思路

    2-SAT,xi 表示变量i取0, xi+n表示i取1.把关系变成有向图,如果i, i + n在同一强连通分量中那么显然关系错误。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    #include <stack>
    
    using namespace std;
    const int MAXN = 2e3 + 7;
    const int MAXM = 2e6 + 7;
    
    struct Node {
        int to, w, next;
    } edge[MAXM * 2];
    
    int first[MAXN], sign, dfn[MAXN], low[MAXN], ins[MAXN], n, m, idx, tot, color[MAXN];
    
    stack<int>st;
    
    inline void init() {
        memset(first, -1, sizeof(first));
        memset(dfn, 0, sizeof(dfn));
        memset(low, 0, sizeof(low));
        memset(ins, 0, sizeof(ins));
        memset(color, 0, sizeof(color));
        sign = idx = tot = 0;
        while(!st.empty()) {
            st.pop();
        }
    }
    
    inline void add_edge(int u, int v, int w) {
        edge[sign].to = v;
        edge[sign].w = w;
        edge[sign].next = first[u];
        first[u] = sign++;
    }
    
    void tarjan(int x) {
        low[x] = dfn[x] = ++idx;
        st.push(x), ins[x] = 1;
        for(int i = first[x]; ~i; i = edge[i].next) {
            int to = edge[i].to;
            if(!dfn[to]) {
                tarjan(to);
                low[x] = min(low[x], low[to]);
            } else if(ins[to]) {
                low[x] = min(low[x], dfn[to]);
            }
        }
        int top;
        if(dfn[x] == low[x]) {
            tot++;
            do {
                top = st.top();
                st.pop();
                ins[top] = 0;
                color[top] = tot;
            } while(top != x);
        }
    }
    
    void TwoSAT() {
        for(int i = 1; i <= n; i++ ) {
            if(!dfn[i]) {
                tarjan(i);
            }
        }
        bool ok = 1;
        for(int i = 1; i <= n; i++ ) {
            if(color[i] == color[i + n]) {
                ok = 0;
                break;
            }
        }
        puts(ok ? "YES" : "NO");
    }
    
    int main() {
        int a, b, c;
        char opt[15];
        while(~scanf("%d %d", &n, &m)) {
            init();
            for(int i = 1; i <= m; i++ ) {
                scanf("%d %d %d %s", &a, &b, &c, opt);
                a++, b++;
                if(opt[0] == 'A') {
                    if(c == 1) { /// A and B == 1;
                        add_edge(a, a + n, 1), add_edge(b, b + n, 1);
                        add_edge(a + n, b + n, 1), add_edge(b + n, a + n, 1);
                    } else {     /// A and B == 0;
                        add_edge(a + n, b, 1);
                        add_edge(b + n, a, 1);
                    }
                } else if(opt[0] == 'O') {
                    if(c == 1) { /// A or B == 1;
                        add_edge(a, b + n, 1), add_edge(b, a + n, 1);
                    } else {     /// A or B == 0;
                        add_edge(a, b, 1), add_edge(b, a, 1);
                        add_edge(a + n, a, 1), add_edge(b + n, b, 1);
                    }
                } else if(opt[0] == 'X') {
                    if(c == 1) { /// A xor B == 1;
                        add_edge(a, b + n, 1), add_edge(b, a + n, 1);
                        add_edge(a + n, b, 1), add_edge(b + n, a, 1);
                    } else {     /// A xor B == 0;
                        add_edge(a, b, 1), add_edge(b, a, 1);
                        add_edge(a + n, b + n, 1), add_edge(b + n, a + n, 1);
                    }
                }
            }
            TwoSAT();
        }
    
        return 0;
    }
    
    
  • 相关阅读:
    62 ip与int类型的转换
    60再谈指针
    59任由制转换
    58进制转换工具
    吉哥工作
    apple
    找第一个非0元素的位置
    若干个数据之和 不考虑溢出
    汇编程序w=x*y+z-200
    4位bcd数转换为2进制数
  • 原文地址:https://www.cnblogs.com/Q1143316492/p/9179541.html
Copyright © 2011-2022 走看看