zoukankan      html  css  js  c++  java
  • LCA的两种求法

    HDU 2586 

    题意:一棵树,多次询问任意两点的路径长度。

    LCA:最近公共祖先Least Common Ancestors。两个节点向根爬,第一个碰在一起的结点。

    求出x, y的最近公共祖先lca后,假设dist[x]为x到根的距离,那么x->y的距离为dist[x]+dist[y]-2*dist[lca]

    求最近公共祖先解法常见的有两种

    1, tarjan+并查集

    2,树上倍增

    首先是树上倍增。

     

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 #include <algorithm>
     5 
     6 using namespace std;
     7 const int maxn = 4e4 + 7;
     8 
     9 int T, n, m, u, v, w;
    10 
    11 int first[maxn], sign, st[maxn][21], level[maxn], dist[maxn];
    12 
    13 struct Node {
    14     int to, w, next;
    15 } edge[maxn * 2];
    16 
    17 inline void init() {
    18     for(int i = 0; i <= n; i ++ ) {
    19         first[i] = -1;
    20     }
    21     sign = 0;
    22 }
    23 
    24 inline void add_edge(int u, int v, int w) {
    25     edge[sign].to = v;
    26     edge[sign].w = w;
    27     edge[sign].next = first[u];
    28     first[u] = sign ++;
    29 }
    30 
    31 void dfs(int now, int father) {
    32     level[now] = level[father] + 1;
    33     st[now][0] = father;
    34     for(int i = 1; (1 << i) <= level[now]; i ++ ) {
    35         st[now][i] = st[ st[now][i - 1] ][i - 1];
    36     }
    37     for(int i = first[now]; ~i; i = edge[i].next) {
    38         int to = edge[i].to, w = edge[i].w;
    39         if(to == father) {
    40             continue;
    41         }
    42         dist[to] = dist[now] + w;
    43         dfs(to, now);
    44     }
    45 }
    46 
    47 int LCA(int x, int y) {
    48     if(level[x] > level[y]) {
    49         swap(x, y);
    50     }
    51     for(int i = 20; i >= 0; i -- ) {
    52         if(level[x] + (1 << i) <= level[y]) {
    53             y = st[y][i];
    54         }
    55     }
    56     if(x == y) {
    57         return x;
    58     }
    59     for(int i = 20; i >= 0; i -- ) {
    60         if(st[x][i] == st[y][i]) {
    61             continue;
    62         } else {
    63             x = st[x][i], y = st[y][i];
    64         }
    65     }
    66     return st[x][0];
    67 }
    68 
    69 int main() {
    70     scanf("%d", &T);
    71     while(T--) {
    72         scanf("%d %d", &n, &m);
    73         init();
    74         for(int i = 1; i <= n - 1; i ++ ) {
    75             scanf("%d %d %d", &u, &v, &w);
    76             add_edge(u, v, w);
    77             add_edge(v, u, w);
    78         }
    79         memset(level, 0, sizeof(level));
    80         memset(st, 0, sizeof(st));
    81         dist[1] = 0;
    82         dfs(1, 0);
    83         for(int i = 1; i <= m; i ++ ) {
    84             int u, v;
    85             scanf("%d %d", &u, &v);
    86             int lca = LCA(u, v);
    87             printf("%d
    ", dist[u] + dist[v] - 2 * dist[lca]);
    88         }
    89     }
    90 
    91     return 0;
    92 }
    View Code

    然后是tarjan的解法(参考算法竞赛进阶指南)

    个人理解,tarjan算法就是对搜索的过程中维护了一些性质。在搜索的过程中把点分为三类

    1,已经范围且回溯的点,代码中vis[x]=2

    2,已经访问还没有回溯的点,代码中vis[x]=1

    3,未被标记的点

    每一个回溯的点都用并查集连到他的父节点,这样如果我们x点正在访问,我们需要知道x,y的lca,而y已经被访问了,那么并查集y的根就是x,y的lca

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <iostream>
      4 #include <algorithm>
      5 
      6 using namespace std;
      7 const int MAXN = 5e4 + 7;
      8 const int INF = 0x3f3f3f3f;
      9 
     10 int n, m, first[MAXN], sign;
     11 
     12 int pre[MAXN], ans[MAXN], vis[MAXN], dist[MAXN], lca[MAXN], indexs;
     13 
     14 vector<pair<int, int> >query[MAXN]; ///y, id
     15 
     16 struct Node {
     17     int to, w, next;
     18 } edge[MAXN * 2];
     19 
     20 inline void init() {
     21     for(int i = 0; i <= n; i++ ) {
     22         first[i] = -1;
     23         pre[i] = i;
     24         query[i].clear();
     25         ans[i] = INF;
     26         vis[i] = 0;
     27     }
     28     sign = 0;
     29 }
     30 
     31 inline void add_edge(int u, int v, int w) {
     32     edge[sign].to = v;
     33     edge[sign].w = w;
     34     edge[sign].next = first[u];
     35     first[u] = sign++;
     36 }
     37 
     38 int findx(int x) {
     39     return pre[x] == x ? x : pre[x] = findx(pre[x]);
     40 }
     41 
     42 inline void join(int x, int y) {
     43     int fx = findx(x), fy = findx(y);
     44     pre[fx] = fy;
     45 }
     46 
     47 inline bool same(int x, int y) {
     48     return findx(x) == findx(y);
     49 }
     50 
     51 void tarjan(int now) {
     52     vis[now] = 1;
     53     for(int i = first[now]; ~i; i = edge[i].next) {
     54         int to = edge[i].to;
     55         if(!vis[to]) {
     56             dist[to] = dist[now] + edge[i].w;
     57             tarjan(to);
     58             pre[to] = now;
     59         }
     60     }
     61     for(int i = 0; i < query[now].size(); i++ ) {
     62         int y = query[now][i].first, id = query[now][i].second;
     63         if(vis[y] == 2) {
     64             int lca = findx(y);
     65             ans[id] = min(ans[id], dist[now] + dist[y] - 2 * dist[lca]);
     66         }
     67     }
     68     vis[now] = 2;
     69 }
     70 
     71 int main()
     72 {
     73     int T;
     74     scanf("%d", &T);
     75     while(T--) {
     76         scanf("%d %d", &n, &m);
     77         init();
     78         for(int i = 1; i <= n - 1; i++ ) {
     79             int u, v, w;
     80             scanf("%d %d %d", &u, &v, &w);
     81             add_edge(u, v, w);
     82             add_edge(v, u, w);
     83         }
     84         for(int i = 1; i <= m; i++ ) {
     85             int x, y;
     86             scanf("%d %d", &x, &y);
     87             if(x == y) {
     88                 ans[i] = 0;
     89                 continue;
     90             }
     91             query[x].push_back(make_pair(y, i));
     92             query[y].push_back(make_pair(x, i));
     93             ans[i] = INF;
     94         }
     95         tarjan(1);
     96         for(int i = 1; i <= m; i++ ) {
     97             printf("%d
    ", ans[i]);
     98         }
     99     }
    100     return 0;
    101 }
    View Code
  • 相关阅读:
    IDOC练习(一、发送端配置)
    节约性能的一个sql
    获取用户IP地址及用户名
    获取一个结构的所有字段
    获取文件名称的两个函数
    时间戳
    SMOD和CMOD
    内表生成XML简单实例
    ABAP&nbsp;编辑器设置(主动…
    ABAP常用Function
  • 原文地址:https://www.cnblogs.com/Q1143316492/p/9194214.html
Copyright © 2011-2022 走看看