zoukankan      html  css  js  c++  java
  • Gym-101466K Random Numbers(线段树,数学,唯一分解定理)

    给一棵树,树上每个节点有一个权值,有两个操作,RAND操作查询u的子树乘积是多少以及有多少因数,SEED操作把节点u乘上v

    n,q <= 1e5。数值小于等于1e9,最大的质因数不超过13

    组队训练和队友一起写的,写到头昏,代码也是合力完成的,我数学几乎为0,数学部分感谢队友@lllrj抬一手

    思路:首先由于乘积的值过大,线段树不能直接维护权值,考虑到查询的是因数个数,所以线段树直接维护2,3,5,7,11,13的指数,乘一个数就是把这个数质因数分解再单点更新,查询就是区间求和,乘积用快速幂计算,至于因数的个数由唯一分解定理可知,把一个数分解质因数变成(x1^n1)*(x2^n2)*(x3^n3)......的形式,因数的个数就是(n1+1)*(n2+1)*(n3+1).....然后两个结果都要对1e9+7取模,比赛时后一个结果忘记取模浪费了快一个小时。。。

    建树的话就是按dfs序建树,也是个常见套路,参见HDU-3974。需要注意按dfs序建树之后不能直接用编号的权值去建(比如a【3】不一定在线段树【3,3】这个点上),所以是先建树,输入的时候做更新

    AC代码:217ms,29.4MB

      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 #include<iostream>
      5 #include<vector>
      6 #include<queue>
      7 #include<cmath>
      8 #include<set>
      9 #define lid id<<1
     10 #define rid id<<1|1
     11 #define INF 0x3f3f3f3f
     12 #define LL long long
     13 #define debug(x) cout << "[" << x << "]" << endl
     14 using namespace std;
     15 const int maxn = 1e5+5;
     16 int b[]={2,3,5,7,11,13};
     17 int d[maxn][6]={0};
     18 void cal(int x, int *d)
     19 {
     20     for(int i = 0;i < 6 ;i++){
     21         while(x%b[i]==0)x/=b[i],d[i]++;
     22     }
     23 }
     24 const int mx = 1e5+10;
     25 const int mod = 1e9+7;
     26 int L[mx], R[mx], p[mx];
     27 struct tree{
     28     int l, r;
     29     int p[6]; //2,3,5,7,11,13
     30     int lazy[6];
     31 }tree[mx<<2];
     32 vector<int> G[mx];
     33 int cnt;
     34 LL Ans[6] = {0};
     35 
     36 LL qpow(LL x, LL n){ //x^n
     37     LL res = 1;
     38     while (n > 0){
     39         if (n & 1) res = res*x%mod;
     40         x = x*x % mod;
     41         n >>= 1;
     42     }
     43     return res;
     44 }
     45 
     46 void push_up(int id){
     47     for (int i = 0; i < 6; i++)
     48         tree[id].p[i] = tree[lid].p[i]+tree[rid].p[i];
     49 }
     50 
     51 void build(int l, int r, int id){
     52     tree[id].l = l;
     53     tree[id].r = r;
     54     for (int i = 0; i < 6; i++) tree[id].p[i] = 0;
     55     if (l == r) return;
     56     int mid = (l+r) >> 1;
     57     build(l, mid, lid);
     58     build(mid+1, r, rid);
     59 }
     60 
     61 void dfs(int u){
     62     L[u] = ++cnt;
     63     int len = G[u].size();
     64     for (int i = 0; i < len; i++){
     65         int v = G[u][i];
     66         dfs(v);
     67     }
     68     R[u] = cnt;
     69 }
     70 
     71 void upd(int c, int id, int *x){
     72     if (tree[id].l == c && tree[id].r == c){
     73         for (int i = 0; i < 6; i++)
     74             tree[id].p[i] += x[i];
     75         return;
     76     }
     77     int mid = (tree[id].l + tree[id].r)>>1;
     78     if (c <= mid) upd(c, lid, x);
     79     else upd(c, rid, x);
     80     push_up(id);
     81 }
     82 
     83 void query(int l, int r, int id){
     84     if (tree[id].l == l && tree[id].r == r){
     85         for (int i = 0; i < 6; i++)
     86             Ans[i] += tree[id].p[i];
     87         return;
     88     }
     89     int mid = (tree[id].l + tree[id].r)>>1;
     90     if (r <= mid) query(l, r, lid);
     91     else if (mid < l) query(l, r, rid);
     92     else {
     93         query(l, mid, lid);
     94         query(mid+1, r, rid);
     95     }
     96 }
     97 
     98 int main(){
     99     int n, u, v, a, q;
    100     cnt = 0;
    101     scanf("%d", &n);
    102     for (int i = 1; i < n; i++){
    103         scanf("%d%d", &u, &v);
    104         G[u].push_back(v);
    105         p[v] = u;
    106     }
    107     for (int i = 0; i < n; i++){
    108         if (!p[i]) {
    109             dfs(i);
    110             break;
    111         }
    112     }
    113     build(1, n, 1);
    114     for (int i = 0; i < n; i++){
    115         scanf("%d", &a);
    116         cal(a,d[i]);
    117         upd(L[i], 1, d[i]);
    118     }
    119     scanf("%d", &q);
    120     while (q--){
    121         char s[10];
    122         int d2[6] = {0};
    123         scanf("%s%d", s, &a);
    124         if (s[0] =='R'){
    125             memset(Ans, 0, sizeof Ans);
    126             query(L[a], R[a], 1);
    127             LL ans = 1;
    128             LL num = 1;
    129             for (int i = 0; i < 6; i++){
    130                 //debug(Ans[i]);
    131                 num = (num*qpow(b[i], Ans[i]))%mod;
    132                 ans = ans*(Ans[i]+1)%mod;
    133             }
    134             printf("%lld %lld
    ", num, ans);
    135         }
    136         else {
    137             int c;
    138             scanf("%d", &c);
    139             cal(c, d2);
    140             upd(L[a], 1, d2);
    141         }
    142     }
    143     return 0;
    144 }
    View Code

    赛后微调(并没有什么改变):202ms,27MB

      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 #include<iostream>
      5 #include<vector>
      6 #include<queue>
      7 #include<cmath>
      8 #include<set>
      9 #define lid id<<1
     10 #define rid id<<1|1
     11 #define INF 0x3f3f3f3f
     12 #define LL long long
     13 #define debug(x) cout << "[" << x << "]" << endl
     14 using namespace std;
     15 
     16 int b[] = {2, 3, 5, 7, 11, 13};
     17 const int mx = 1e5+10;
     18 const int mod = 1e9+7;
     19 int L[mx], R[mx], p[mx];
     20 struct tree{
     21     int l, r;
     22     int p[6];
     23     int lazy[6];
     24 }tree[mx<<2];
     25 vector<int> G[mx];
     26 int cnt = 0;
     27 LL Ans[6] = {0};
     28 
     29 void cal(int x, int *d){
     30     for(int i = 0; i < 6 ; i++){
     31         while(x % b[i] == 0){
     32             x /= b[i];
     33             d[i]++;
     34         }
     35     }
     36 }
     37 
     38 LL qpow(LL x, LL n){ //x^n
     39     LL res = 1;
     40     while (n > 0){
     41         if (n & 1) res = res*x%mod;
     42         x = x*x % mod;
     43         n >>= 1;
     44     }
     45     return res;
     46 }
     47 
     48 void push_up(int id){
     49     for (int i = 0; i < 6; i++)
     50         tree[id].p[i] = tree[lid].p[i]+tree[rid].p[i];
     51 }
     52 
     53 void build(int l, int r, int id){
     54     tree[id].l = l;
     55     tree[id].r = r;
     56     for (int i = 0; i < 6; i++) tree[id].p[i] = 0;
     57     if (l == r) return;
     58     int mid = (l+r) >> 1;
     59     build(l, mid, lid);
     60     build(mid+1, r, rid);
     61 }
     62 
     63 void dfs(int u){
     64     L[u] = ++cnt;
     65     int len = G[u].size();
     66     for (int i = 0; i < len; i++){
     67         int v = G[u][i];
     68         dfs(v);
     69     }
     70     R[u] = cnt;
     71 }
     72 
     73 void upd(int c, int id, int *x){
     74     if (tree[id].l == c && tree[id].r == c){
     75         for (int i = 0; i < 6; i++)
     76             tree[id].p[i] += x[i];
     77         return;
     78     }
     79     int mid = (tree[id].l + tree[id].r)>>1;
     80     if (c <= mid) upd(c, lid, x);
     81     else upd(c, rid, x);
     82     push_up(id);
     83 }
     84 
     85 void query(int l, int r, int id){
     86     if (tree[id].l == l && tree[id].r == r){
     87         for (int i = 0; i < 6; i++)
     88             Ans[i] += tree[id].p[i];
     89         return;
     90     }
     91     int mid = (tree[id].l + tree[id].r)>>1;
     92     if (r <= mid) query(l, r, lid);
     93     else if (mid < l) query(l, r, rid);
     94     else {
     95         query(l, mid, lid);
     96         query(mid+1, r, rid);
     97     }
     98 }
     99 
    100 int main(){
    101     int n, u, v, a, q;
    102     scanf("%d", &n);
    103     for (int i = 1; i < n; i++){
    104         scanf("%d%d", &u, &v);
    105         G[u].push_back(v);
    106         p[v] = u;
    107     }
    108     for (int i = 0; i < n; i++){
    109         if (!p[i]) {
    110             dfs(i);
    111             break;
    112         }
    113     }
    114     build(1, n, 1);
    115     for (int i = 0; i < n; i++){
    116         int d[6] = {0};
    117         scanf("%d", &a);
    118         cal(a, d);
    119         upd(L[i], 1, d);
    120     }
    121     scanf("%d", &q);
    122     while (q--){
    123         char s[10];
    124         scanf("%s%d", s, &a);
    125         if (s[0] == 'R'){
    126             memset(Ans, 0, sizeof Ans);
    127             query(L[a], R[a], 1);
    128             LL ans = 1, num = 1;
    129             for (int i = 0; i < 6; i++){
    130                 num = (num*qpow(b[i], Ans[i]))%mod;
    131                 ans = ans*(Ans[i]+1)%mod;
    132             }
    133             printf("%lld %lld
    ", num, ans);
    134         }
    135         else {
    136             int c;
    137             int d2[6] = {0};
    138             scanf("%d", &c);
    139             cal(c, d2);
    140             upd(L[a], 1, d2);
    141         }
    142     }
    143     return 0;
    144 }
    View Code
  • 相关阅读:
    Maven环境搭建、调试、打包
    JAVA环境变量JAVA_HOME、CLASSPATH、PATH设置详解
    Activiti工作流引擎核心介绍
    NodeJS概述
    JRE集成到Tomcat
    ORACLE递归查询(适用于ID,PARENTID结构数据表)
    爬虫入门——02
    爬虫入门——01
    利用java.lang.reflect.Constructor动态实例化对象
    【java入门点滴】向上转型与向下转型
  • 原文地址:https://www.cnblogs.com/QAQorz/p/9501783.html
Copyright © 2011-2022 走看看