zoukankan      html  css  js  c++  java
  • 洛谷 P3384 树链剖分模板+代码解释

    题意:一棵n个结点的树,每个点有点权,有如下操作:

    1 x y c:给x到y的链上所有结点点权加上c

    2 x y:查询x到y链上的点权和

    3 x c:给x及其子树上的所有结点点权加上c

    4 x:查询x及其子树所有结点的点权和

    第一遍dfs:预处理,子树大小,节点深度,顺便标记结点的父亲结点编号

    void dfs(int u, int fa, int cnt){
        sum[u] = 1; //sum[u]表示u的子树大小,首先只有自己
        rk[u] = cnt; //深度为cnt
        f[u] = fa; //标记父节点
        for (int i = head[u]; i; i = e[i].nxt){
            int v = e[i].v;
            if (v == fa) continue;
            dfs(v, u, cnt+1);
            sum[u] += sum[v]; //加上儿子v的子树大小
            if (sum[v] > sum[son[u]]) son[u] = v; //如果v的子树比当前重儿子大,更新v为重儿子
        }
    }

    第二遍dfs:处理每个点的顶端,按dfs序给每个点分配一个编号,使其能够映射到线段树上

    void dfs2(int u, int t){
        top[u] = t;//top是能沿重链走到的最上方的点
        idx[u] = ++cnt; //打上时间戳
        a[cnt] = b[u]; //映射到线段树的区间上
        if (!son[u]) return; //这是叶节点
        dfs2(son[u], t); //沿重链走
        for (int i = head[u]; i; i = e[i].nxt){
            int v = e[i].v;
            if (!idx[v]) dfs2(v, v); //处理轻儿子
        }
    }

     

    怎样利用树链剖分的轻重链(主要是重链)加速链上的修改?

    类似LCA的思想,x,y较深的一个往上走

    1. 将深的那个结点往上提,直至x,y在同一条重链,每次都对走过的链上结点修改。

    2. 修改x,y之间的链,这条链是重链

    这部分代码:

    void TreeAdd(int x, int y, LL c){
        while (top[x] != top[y]){ //不在同一重链
            if (rk[top[x]] < rk[top[y]]) swap(x, y);
            upd(idx[top[x]], idx[x], 1, c);
            x = f[top[x]]; //走到顶端的父亲
        }
        if (rk[x] > rk[y]) swap(x, y);
        upd(idx[x], idx[y], 1, c); //修改现在所在的这一条重链
    }

    然后就只是普通的线段树操作而已了 

    完整代码:

      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 #include<iostream>
      5 #define LL long long
      6 #define debug(x) cout << "[" << x << "]" << endl
      7 #define lid id << 1
      8 #define rid id << 1 | 1
      9 using namespace std;
     10 
     11 const int mx = 1e5+10;
     12 
     13 struct tree{
     14     int l, r;
     15     LL sum, lazy;
     16 }tree[mx<<2];
     17 
     18 struct edge{
     19     int v, nxt;
     20 }e[mx<<1];
     21 int tot = 1, mod;
     22 int head[mx], sum[mx], rk[mx], son[mx], f[mx], top[mx], idx[mx];
     23 LL a[mx], b[mx];
     24 
     25 void add(int u, int v){
     26     e[tot].v = v;
     27     e[tot].nxt = head[u];
     28     head[u] = tot++;
     29 }
     30 
     31 void dfs(int u, int fa, int cnt){
     32     sum[u] = 1;
     33     rk[u] = cnt;
     34     f[u] = fa;
     35     for (int i = head[u]; i; i = e[i].nxt){
     36         int v = e[i].v;
     37         if (v == fa) continue;
     38         dfs(v, u, cnt+1);
     39         sum[u] += sum[v];
     40         if (sum[v] > sum[son[u]]) son[u] = v;
     41     }
     42 }
     43 
     44 int cnt = 0;
     45 void dfs2(int u, int t){
     46     top[u] = t;
     47     idx[u] = ++cnt;
     48     a[cnt] = b[u];
     49     if (!son[u]) return;
     50     dfs2(son[u], t);
     51     for (int i = head[u]; i; i = e[i].nxt){
     52         int v = e[i].v;
     53         if (!idx[v]) dfs2(v, v);
     54     }
     55 }
     56 
     57 void push_up(int id){
     58     tree[id].sum = (tree[lid].sum + tree[rid].sum)%mod;
     59 }
     60 
     61 void build(int l, int r, int id){
     62     tree[id].l = l;
     63     tree[id].r = r;
     64     tree[id].lazy = 0;
     65     if (l == r) {
     66         tree[id].sum = a[l]%mod;
     67         return;
     68     }
     69     int mid = (l+r)>>1;
     70     build(l, mid, lid);
     71     build(mid+1, r, rid);
     72     push_up(id);
     73 }
     74 
     75 void push_down(int id){
     76     if (tree[id].lazy != 0){
     77         LL x = tree[id].lazy;
     78         tree[lid].lazy += x;
     79         tree[lid].lazy %= mod;
     80         tree[rid].lazy += x;
     81         tree[rid].lazy %= mod;
     82         tree[lid].sum += x*(tree[lid].r-tree[lid].l+1);
     83         tree[lid].sum %= mod;
     84         tree[rid].sum += x*(tree[rid].r-tree[rid].l+1);
     85         tree[rid].sum %= mod;
     86         tree[id].lazy = 0;
     87     }
     88 }
     89 
     90 void upd(int l, int r, int id, LL c){
     91     if (tree[id].l == l && tree[id].r == r){
     92         tree[id].sum += c*(r-l+1);
     93         tree[id].sum %= mod;
     94         tree[id].lazy += c;
     95         tree[id].lazy %= mod;
     96         return;
     97     }
     98     push_down(id);
     99     int mid = (tree[id].l + tree[id].r)>>1;
    100     if (r <= mid) upd(l, r, lid, c);
    101     else if (mid < l) upd(l, r, rid, c);
    102     else {
    103         upd(l, mid, lid, c);
    104         upd(mid+1, r, rid, c);
    105     }
    106     push_up(id);
    107 }
    108 
    109 LL query(int l, int r, int id){
    110     if (tree[id].l == l && tree[id].r == r) return tree[id].sum%mod;
    111     push_down(id);
    112     int mid = (tree[id].l + tree[id].r)>>1;
    113     if (r <= mid) return query(l, r, lid)%mod;
    114     else if (mid < l) return query(l, r, rid)%mod;
    115     return (query(l, mid, lid) + query(mid+1, r, rid))%mod;
    116 }
    117 
    118 void TreeAdd(int x, int y, LL c){
    119     while (top[x] != top[y]){
    120         if (rk[top[x]] < rk[top[y]]) swap(x, y);
    121         upd(idx[top[x]], idx[x], 1, c);
    122         x = f[top[x]];
    123     }
    124     if (rk[x] > rk[y]) swap(x, y);
    125     upd(idx[x], idx[y], 1, c);
    126 }
    127 
    128 LL TreeSum(int x, int y){
    129     LL ans = 0;
    130     while (top[x] != top[y]){
    131         if (rk[top[x]] < rk[top[y]]) swap(x, y);
    132         ans += query(idx[top[x]], idx[x], 1);
    133         ans %= mod;
    134         x = f[top[x]];
    135     }
    136     if (rk[x] > rk[y]) swap(x, y);
    137     ans += query(idx[x], idx[y], 1);
    138     ans %= mod;
    139     return ans;
    140 }
    141 
    142 int main(){
    143     int n, m, r, u, v;
    144     scanf("%d%d%d%d", &n, &m, &r, &mod);
    145     for (int i = 1; i <= n; i++) scanf("%lld", &b[i]);
    146     for (int i = 2; i <= n; i++){
    147         scanf("%d%d", &u, &v);
    148         add(u, v);
    149         add(v, u);
    150     }
    151     dfs(r, 0, 1);
    152     dfs2(r, r);
    153     build(1, n, 1);
    154     int op, x, y;
    155     LL c;
    156     while (m--){
    157         scanf("%d%d", &op, &x);
    158         if (op == 1) {
    159             scanf("%d%lld", &y, &c);
    160             TreeAdd(x, y, c);
    161         }
    162         else if (op == 2){
    163             scanf("%d", &y);
    164             printf("%lld
    ", TreeSum(x, y));
    165         }
    166         else if (op == 3){
    167             scanf("%lld", &c);
    168             upd(idx[x], idx[x]+sum[x]-1, 1, c%mod);
    169         }
    170         else printf("%lld
    ", query(idx[x], idx[x]+sum[x]-1, 1));
    171     }
    172     return 0;
    173 }
    View Code
  • 相关阅读:
    SpringMVC 配置文件详解
    SpringMVC 入门demo
    SpringMVC 简介
    解决IDEA部署web项目时,jar包拷贝不全的问题
    录制 带鼠标光圈效果的视频
    Spring整合Junit4进行单元测试
    Illegal invocation with document.querySelector [duplicate]
    html-webpack-template, 一个更好的html web service插件
    Script error.解决方法
    ios9 safari currentTime audio bug
  • 原文地址:https://www.cnblogs.com/QAQorz/p/9637717.html
Copyright © 2011-2022 走看看